An Automated, Pharmacist-Driven Initiative Improves Quality of Care for Staphylococcus aureus Bacteremia

Eric Wenzler1, Fei Wang2, Debra Goff2, Beth Prier2, John Mellett2, Julie Mangino3, and Karri A. Bauer2

1College of Pharmacy, University of Illinois at Chicago; Departments of 2Pharmacy and 3Internal Medicine, Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, OH
Journal Club Format

• Issue being studied
• Rationale
• Study design and methodology
• Main outcomes
• Primary conclusions
• Study limitations
• Study implications
• Questions/discussion
“The objective of this study was to evaluate the impact of an automated, pharmacist-driven targeted initiative for patients with *S. aureus* bacteremia (SAB).”
Rationale

• All patients with SAB were not being optimally managed. We could do better. We should do better. The challenge was how? Mandate ID consults? Pharmacists manage 24/7?
• As ASPs develop, we need to explore ways to maximize program efficiency.
• Technological advances such as the electronic medical record (EMR) and clinical decision support systems (CDSS) allow ASPs to deliver more efficient patient care.
• Incorporating health informatics allows ASPs to more seamlessly integrate data from various sources to optimize patient outcomes.
Study Design and Methodology

- **Design**: Retrospective, quasi-experimental study.
- **Subjects**: All hospitalized adult inpatients with a blood culture positive for *S. aureus*. (Only first episode of SAB per patient analyzed.)
- **Time frame**:
 - Pre-intervention period: January to March 2015
 - Intervention period: January to March 2016
- **Exclusions**: included patients who:
 - Were incarcerated.
 - Received an ID consult prior to positive blood culture.
 - Were transferred from an outside hospital with ongoing SAB on admission.
 - Were discharged prematurely against medical advice.
Study Design and Methodology

PRE-INTERVENTION

• Blood cultures: Standard analysis using RDT Verigene Gram positive blood culture (BC-GP) assay.

• Initial reporting: Laboratory personnel notified treating physician within 10 minutes (during both pre-intervention and intervention periods).

• Evidence-based practice guideline: Provided to clinicians for diagnosis and management of SAB.

• ASP evaluation: Case-by-case basis; no formal system-wide process to actively promote SAB quality-of-care measures.
Diagnosis and Management of *Staphylococcus aureus*
Bacteremia in Adults

- Suspected bloodstream infection*
- Two sets of blood cultures obtained
- Empiric antibiotics initiated

Blood culture(s) positive

- Nanosphere’s Verigene Gram-positive nucleic acid array performed directly on positive blood culture.
- Genus, species and resistance determinant identified in 2.5 hours.

Staphylococcus aureus DNA detected

Confirmed *Staphylococcus aureus* bacteremia:
- S. aureus isolated from blood culture should NEVER be considered a contaminant.

MSSA bacteremia

- Immediately begin nafcillin (refer to dosing chart on page 2).
- Cefazolin should be considered as an alternative therapy to nafcillin in patients with history of non-anaphylactic reaction to penicillins and those with severe hepatic dysfunction.
- Obtain Infectious Diseases consult.
- Repeat blood cultures daily until negative x 72 hours.
- Remove indwelling IV catheters.
- Obtain echocardiogram:
 - Obtain TEE in patients with a prosthetic valve or congenital heart disease.
 - If TTE is negative, obtain a TEE in patients whose fever and bacteremia do not resolve within 72 hours, presence of intracardiac device, hemodialysis dependency, or spinal infection or nonvertebral osteomyelitis.
 - If TTE is inadequate or of poor quality, discuss need for TEE with Echo (TEE) lab physicians.
- Rule out disseminated infection (i.e. endocarditis, septic arthritis, discitis, osteomyelitis, thrombophlebitis).

Methicillin resistance (meA) detected? YES

MRSA bacteremia

- Immediately begin vancomycin (refer to dosing chart on page 2).
- Obtain Infectious Diseases consult.
- Repeat blood cultures daily until negative x 72 hours.
- Remove indwelling IV catheters.
- Obtain echocardiogram:
 - Obtain TEE in patients with a prosthetic valve or congenital heart disease.
 - If TTE is negative, obtain a TEE in patients whose fever and bacteremia do not resolve within 72 hours, presence of intracardiac device, hemodialysis dependency, or spinal infection or nonvertebral osteomyelitis.
 - If TTE is inadequate or of poor quality, discuss need for TEE with Echo (TEE) lab physicians.
- Rule out disseminated infection (i.e. endocarditis, septic arthritis, discitis, osteomyelitis, thrombophlebitis).
- Daptomycin, ceftriaxone, or telavancin should be considered as an alternative to vancomycin in patients who have received > 6 weeks of prior vancomycin or with a history of MRSA bacteremia treated with vancomycin.

Recommended duration of therapy for bacteremia without disseminated infection (i.e. endocarditis, septic arthritis, discitis, osteomyelitis, thrombophlebitis) is at least 4 weeks from first documented negative blood culture with resolution of symptoms. Two weeks of therapy may be considered if ALL of the following criteria are met:
- Exclusion of endocarditis.
 - TTE: if negative or poor quality, consider TEE.
- No implanted prostheses or cardiac devices (PPM, ICD).
- Follow-up cultures are negative x 72 hours.
- Afebrile (<100.4°F) within 72 h of therapy.
- No evidence of metastatic sites of infection.
- Patient is not diabetic.
- All potential sources have been removed.
- Patient is not immunocompromised:
 - Neutropenia with ANC ≤ 500 cells/μL.
 - HIV with CD4 count < 200 cells/mm^2.
 - Receipt of chemotherapy within previous 2 weeks: for active malignancy.
 - Administration of immunosuppressive agents (azathioprine, cyclosporine, tacrolimus, sirolimus, and mycophenolate).
 - Administration of corticosteroid dose equivalent to 20 mg prednisone for at least 1 month.
Study Design and Methodology

POST-INTERVENTION

• **Pharmacist notification 24/7**: Service-based pharmacists notified of BC-GP results every 15 minutes through use of patient scoring tool.

• **Scoring tool**: Developed by project team consisting of 3 informatics pharmacists and 2 ID pharmacists.

• **Pharmacist action**: Pharmacists required to review patient scoring tool list at least once per shift (during 3 8-hr shifts). All patients with SAB evaluated; verbal and written recommendations provided to treating physician via EMR, as needed.
DATA AND OUTCOMES

• **Data obtained:** Age, sex, hospital service, wide range of comorbidities (including SAB in previous 90 days, source of SAB, SA methicillin susceptibility, and hospital or community SAB acquisition).

• **Primary outcomes:** Overall compliance and adherence to individual quality-of-care components:
 - ID consult
 - Repeat blood cultures
 - Echocardiogram
 - Initiation of SAB-targeted antimicrobial treatment (including time to initiation of targeted therapy)
Study Design and Methodology

DATA AND OUTCOMES (cont.)

• **Secondary Outcomes:**
 – Time to pharmacist intervention (difference between time BC-GP signaled positive for *S. aureus* and pharmacist documentation in EMR)
 – Duration of bacteremia
 – Length of hospital stay (LOS)
 – Infection-related LOS
 – 30-day readmission
 – 30-day all-cause mortality
123 Patients Screened

38 patients excluded:
- Received ID consult prior to SAB (36)
- Duplicate encounters (2)
- Age >89 years (1)

Pre-Intervention: 45 patients

Intervention: 39 patients
Subject Assessment

• Demographics and baseline characteristics: Well matched between the 2 groups.

• SAB source and data:
 – Catheter-related source most common.
 – MRSA accounted for over half of SAB episodes.
 – 2/3 and 3/4 of SAB occurrences were community-acquired in pre-intervention and intervention groups, respectively.
An Automated, Pharmacist-Driven Initiative Improves Quality of Care for \textit{Staphylococcus aureus} Bacteremia

Initiation of targeted antibiotics for SAB
- 40 hours sooner in intervention group

ID consults
- 84% → 100%
- \(P = 0.01 \)

Repeat blood cultures
- 95% → 100%
- \(P = 0.49 \)

Clin Infect Dis 2017
An Automated, Pharmacist-Driven Initiative Improves Quality of Care for *Staphylococcus aureus* Bacteremia

Echocardiogram

- 93% → 92%

Mortality

- 6 fold higher in pre-intervention

- 15% → 2%

 P<0.06

Overall compliance

- 68% → 92%

 P<0.008

Wenzler E, Wang F, Goff D, Prier B, Mellett J, Mangino J, Bauer K

Clin Infect Dis 2017
Clinical Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pre-intervention (n = 45)</th>
<th>Intervention (n = 39)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of inpatient antibiotics, d</td>
<td>9.7 [0.98–71.4]</td>
<td>11.5 [1.5–56.6]</td>
<td>.433</td>
</tr>
<tr>
<td>Duration of bacteremia, d</td>
<td>3.1 [0.04–16.4]</td>
<td>2.9 [0.8–13.8]</td>
<td>.981</td>
</tr>
<tr>
<td>Infection-related LOS, d</td>
<td>8.5 [0.4–71.5]</td>
<td>11 [0.8–52.5]</td>
<td>.155</td>
</tr>
<tr>
<td>30-d all-cause mortality</td>
<td>7 (15.6)</td>
<td>1 (2.6)</td>
<td>.063</td>
</tr>
<tr>
<td>30-d readmission</td>
<td>24 (53.3)</td>
<td>16 (41)</td>
<td>.260</td>
</tr>
</tbody>
</table>

Data presented as n (%) or median [min-max].

Abbreviation: LOS, length-of-stay.
Conclusion

• An automated, pharmacist-driven initiative significantly improved adherence to quality-of-care components for patients with S. aureus bacteremia.

• Implementation of a pharmacist-driven intervention in patients with SAB resulted in a significant increase in
 1. number of patients receiving (not mandating) an ID consult
 2. number of patients receiving targeted antibiotic therapy

• We accomplished this by leveraging frontline pharmacists without additional stewardship efforts
Study Limitations

• Use of retrospective design: led to inability to definitively assign causality for process measure compliance.

• Small sample size, single-center, non-randomized.

• Pharmacists only required to review patient scoring tool once per shift.

• Pharmacists did not record amount of time required to make recommendations and interventions, but workload seemed manageable.

• Large disparities noted in some clinical endpoints (eg, mortality) but not statistically significant, possibly owing to small sample size.
Study Implications

• First study to demonstrate impact of an automated, pharmacist-driven intervention for management of patients with SAB.
• Findings show that pharmacist engagement via the EMR can serve as a framework for providing more efficient, impactful, disease state-based patient care for SAB.
Questions and Discussion