A RESEARCH AND DEVELOPMENT (R&D) ROADMAP

FOR

BROADLY PROTECTIVE CORONAVIRUS

VACCINES

1 **TABLE OF CONTENTS** 2

- 3 <u>Preamble</u>
- 4 Introduction
- 5 <u>Virology Applicable to Vaccine R&D</u>
- 6 Immunology and Immune Correlates of Protection
- 7 <u>Vaccinology</u>
- 8 Animal and Human Infection Models for Coronavirus Research
- 9 Policy and Financing
- 10 <u>References</u>
- 11

12 **PREAMBLE**

13

- 14 The Center for Infectious Disease Research and Policy (CIDRAP) at the University of
- 15 Minnesota, with support from the Bill & Melinda Gates Foundation and The Rockefeller
- 16 Foundation, created this research and development (R&D) roadmap for broadly protective
- 17 coronavirus vaccines (referred to as the Coronavirus Vaccines Roadmap [CVR]) to serve as a
- 18 strategic planning tool to facilitate R&D, coordinate funding, and promote stakeholder
- 19 engagement, with the ultimate goal of generating broadly protective vaccines against species
- 20 and strains of the *Coronaviridae* virus family.
- 21
- 22 Primary audiences for this roadmap include academic basic and translational scientists, clinical
- 23 researchers, funders, public health policymakers, government officials, industry scientists,
- 24 business leaders, regulators, and advocacy specialists.
- 25

26 Rationale

- 27 Over the past two decades, three novel pathogenic coronaviruses have emerged from animal
- reservoirs to cause human epidemics or pandemics. Severe acute respiratory syndrome
- 29 coronavirus (SARS-CoV or SARS-CoV-1; herein referred to as SARS-CoV-1) emerged in 2003,
- 30 followed by Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 and SARS-
- 31 CoV-2 in 2019. Coronaviruses can be highly lethal to humans, as illustrated by the 35% case-
- fatality ratio (CFR) for MERS-CoV and the 10% CFR for SARS-CoV-1. Fortunately, neither
- 33 MERS-CoV nor SARS-CoV-1 have been shown to spread efficiently between humans. SARS-
- 34 CoV-2 has a much lower CFR, but because of its high transmissibility, has caused to date over
- 35 600 million confirmed cases and 6.5 million deaths worldwide. The emergence of future
- 36 coronaviruses with pandemic potential, that are both highly pathogenic *and* highly transmissible,
- 37 represents a real and present threat that underscores the critical need for a coordinated R&D
- initiative to develop broadly protective coronavirus vaccines. Additionally, the limited durability
- 39 and immunologic protection conferred by available SARS-CoV-2 vaccines and natural infection
- 40 further highlight the crucial need for a new, proactive approach to develop vaccines that provide
- 41 greater durability and target continually emerging variants.
- 42
- 43 Advancing a global R&D agenda for broadly protective coronavirus vaccines is a large and
- 44 complex endeavor that will require ongoing investment, communication, and coordination
- 45 among researchers; representatives from governments, industry, multilateral and
- 46 nongovernmental organizations; regulators; and public health policymakers. The purpose of this
- 47 roadmap is to provide a framework and timeline to align coordination, leadership, and
- 48 investment to achieve these ambitious goals.
- 49
- 50 A critical overarching goal of R&D efforts for broadly protective coronavirus vaccines is to
- 51 develop vaccines that are available and appropriate for use worldwide. The speed of bringing
- 52 initial SARS-CoV-2 vaccines to market was a major and spectacular accomplishment; however,
- 53 multiple factors resulted in gross inequities in access to vaccines in remote and low-resource
- 54 settings. Disparities were fueled by products whose cold-chain and technical requirements

55 limited their use, protection of national interests in the face of limited supply, and global

- 56 inequities in technical and public health capacity, financing, technology transfer, and
- 57 manufacturing capabilities. Future vaccine development must ensure that global equity is a core
- 58 principle of R&D, and that programs anticipate and resolve issues that may undermine this
- objective. Going forward, early and continuous engagement at the community, national,
- 60 regional, and international levels will be essential to accomplish equitable distribution and
- 61 uptake of future coronavirus vaccines.
- 62

63 Roadmap scope and structure

- 64 This document is aimed primarily at developing new, broadly protective coronavirus vaccines
- that are suitable for use in all countries and will protect against existing coronaviruses known to
- cause serious disease in humans (including new SARS-CoV-2 variants of concern), and any
- other pre-emergent coronaviruses that could spill over from zoonotic reservoirs to humans in thefuture.
- 69
- 70 Recent efforts to develop R&D roadmaps in other fields, such as medical countermeasure
- 71 development for WHO priority diseases (<u>WHO R&D Blueprint Initiative</u>, <u>Modjarrad 2016</u>) and the
- 72 <u>Influenza Vaccines R&D Roadmap</u>, informed the structure of the CVR, which is organized into

73 five topic areas:

- Virology applicable to vaccine R&D
 - Immunology and immune correlates of protection
- 76 Vaccinology
 - Animal and human infection models for coronavirus research
 - Policy and financing
- 78 79

75

77

Each section of this roadmap contains an overview of key issues, barriers, and knowledge gaps 80 germane to that topic area. Building on those issues, high-level strategic goals within the five 81 82 topic areas are identified, followed by associated actions (milestones) required to achieve them. 83 The milestones include target dates for completion and reflect SMART (Specific, Measurable, 84 Achievable, Realistic/Relevant, and Time-sensitive) criteria, to the degree feasible. In some 85 instances, milestones are aspirational in that they reflect an important area of research and include somewhat optimistic timelines to help move the area forward. Each topic area also 86 includes a list of additional research priorities. These lists are not meant to be comprehensive, 87 but rather are intended to illustrate additional areas of interest for future research. Items listed 88 under this heading generally fall into one of the following categories: (1) the item is not of high 89 enough priority to be included in the goals and milestones, (2) the nature of the research or 90 activity does not lend itself to an initial target date for completion (recognizing that research for 91 92 many of the milestones in the CVR will continue to be further refined over time even after the 93 initial target is met), or (3) the research or activity is relatively nonspecific and not amenable to milestone criteria. 94

95

96 This document focuses specifically on issues related to an R&D agenda; a number of issues,

97 although critical to the advancement of vaccine development, distribution, and uptake, are

- 98 beyond the scope of this roadmap. Examples include policy and practices related to current
- 99 SARS-CoV-2 vaccines (such as dosing schedules, frequency of boosters); routine surveillance
- 100 of coronaviruses in human and animal populations; vaccine hesitancy issues; public health
- 101 prevention and control measures; implementation of vaccination programs; and pandemic
- 102 preparedness (e.g., creating vaccine stockpiles and pandemic plans).
- 103

104 Roadmap development process

The CVR development process has engaged a wide range of stakeholders across scientific disciplines, public and private sectors, and international communities to build consensus around R&D priorities and identify strategies for addressing them. The process includes identifying and reviewing relevant scientific literature, discussing scientific challenges and knowledge gaps with a range of subject-matter experts (SMEs) from different fields, conducting in-depth reviews of draft roadmap documents, and offering a widely-publicized public comment period for written feedback.

- Advising CIDRAP's core team throughout the project is a small steering group of senior leaders
- 113 from the Bill & Melinda Gates Foundation; The Rockefeller Foundation; the Wellcome Trust; the
- 114 US National Institute of Allergy and Infectious Diseases (NIAID); the Coalition for Epidemic
- 115 Preparedness Innovations (CEPI); several academic institutions (including University of Iowa
- 116 [USA], University of North Carolina [USA], Icahn School of Medicine at Mount Sinai [USA], and
- 117 University of Witwatersrand [South Africa]); and Biologics Consulting, a US-based consulting
- firm with expertise in regulatory issues. In addition to this steering group, we have established a
- 119 global CVR development taskforce of approximately 40 SMEs, who offer a wide range of
- 120 knowledge and experience in vaccine development. This taskforce is charged with providing
- expert input and commentary on the CVR through detailed online discussions and document
- 122 review.
- 123 This version of the CVR is being posted for public comment from October 24 to November 18,
- 124 2022. Feedback from the public comment period will be incorporated into the roadmap with
- anticipated finalizing and publishing of the CVR in February 2023.
- 126

127 Roadmap vision

- 128 To accelerate the development of durable, broadly protective coronavirus vaccines that: (1) are
- suitable for use in all regions of the globe, including low- and middle-income countries (LMICs),
- 130 (2) can reduce severe illness and death (and potentially prevent infection) from coronaviruses
- 131 (both those known to infect humans and pre-emergent viruses), and (3) will mitigate the impact
- 132 of future coronavirus pandemics worldwide.

133	
134	INTRODUCTION
135	
136	Classification of coronaviruses
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	 Coronaviruses are enveloped positive-sense, single-stranded RNA viruses that include four genera: alphacoronaviruses, betacoronaviruses, gammacoronaviruses, and deltacoronaviruses. All four genera contain viruses that infect animal species (mainly mammals or birds). Only alphacoronaviruses and betacornaviruses are generally known to infect humans; however, zoonotic spread of porcine deltacoronavirus to humans has recently been described (Lednicky 2021). Within the alphacoronavirus genus, two viruses cause illness in humans—human coronavirus 229E and human coronavirus NL63. Both cause mild upper respiratory tract infections consistent with a clinical presentation of the "common cold." Within the betacoronavirus genus, five viruses have been identified that cause human illness. These include severe acute respiratory syndrome coronavirus (MERS-CoV), and two viruses that cause mild upper respiratory tract infections (human coronavirus OC43). Gammacoronaviruses to date are not known to infect humans.
152 153 154 155 156	 Most deltacoronaviruses also do not infect humans; however, porcine deltacoronavirus strains (Hu-PDCoV) have recently been identified in plasma samples from several Haitian children with acute undifferentiated febrile illness, suggesting that zoonotic spread of deltacoronaviruses to humans can occur (<u>Lednicky 2021</u>).
157 158 159 160 161 162 163 164 165 166 167	Betacoronaviruses are of greatest concern from a public health perspective, since this genus includes the three viruses that to date have caused severe illness and death in humans (SARS-CoV-1, SARS-CoV-2, and MERS-CoV). Betacoronaviruses include five different subgenera: embecoviruses (group 2a), sarbecoviruses (group 2b), merbecoviruses (group 2c), and hibcoviruses and nobicoviruses (group 2d) (Zhu 2020). Human coronavirus HKU1 and human coronavirus OC43 are in the embecovirus subgenus, SARS-CoV-1 and SARS-CoV-2 are in the sarbecovirus subgenus, and MERS-CoV is in the merbecovirus subgenus. The other subgenera (hibcoviruses and nobicoviruses) contain viruses that to date have only been found in animals other than humans and few efforts have been made to characterize these group 2d viruses; the potential for viruses in this group to cause human disease remains unknown.
168	Historic occurrence of highly pathogenic betacoronaviruses in humans
169 170 171 172 173 174 175	<i>SARS-CoV-1</i> In November 2002, an outbreak of atypical pneumonia occurred in Guangdong Province, China, and additional outbreaks were recognized in that region in early 2003 (Pieris 2003). In February and March 2003, similar outbreaks occurred in Hong Kong, Singapore, and Toronto. SARS-CoV-1 was identified as the causative agent for these outbreaks in March of that year. Over the next few months, the virus spread to 26 different countries on five continents, with just over 8,000 cases identified and 774 deaths (Pieris 2003), yielding a CFR of about 10% among

- identified cases. Most cases were associated with outbreaks in healthcare settings, although
- some were associated with "super-spreader events." In 2004, a second independent spillover of
- 178 SARS-CoV-1 occurred in China, but only four cases were identified (<u>Wang 2005</u>). Fortunately,
- the virus was not highly transmissible between humans and no additional outbreaks of SARS-
- 180 CoV-1 have been identified since 2004. The virus has not been found in the animal reservoir
- since that time. Several vaccines targeting SARS-CoV-1 were developed and tested in
- 182 preclinical models and a few phase 1 clinical trials were initiated; however, no SARS-CoV-1
- 183 vaccines have advanced beyond that point (<u>Li 2020</u>).

184185 *MERS-CoV*

- MERS-CoV was first identified in 2012 in a patient from the Kingdom of Saudi Arabia who died
 of atypical pneumonia (Zaki 2012). Since then, cases have continued to occur at a low
 incidence rate, primarily in the Middle East and particularly in Saudi Arabia. Cases have been
 identified in 27 countries across the Middle East, North Africa, Europe, North America, and Asia.
 By mid-2022, just over 2,600 cases had been identified globally, with a CFR of about 35%
 among reported cases (ECDC 2022). Human-to-human transmission, while it occurs, is neither
- efficient nor sustained, so cases have not spread widely. As with SARS-CoV-1, vaccines have
- been developed and assessed in preclinical models and several phase 1/2 trials are ongoing (Li
- 193 been developed and assessed in preclinical models and several phase 1/2 that are origoing (\underline{L} 194 2020).
- 194 195

196 SARS-CoV-2

SARS-CoV 2, the causative agent of the current pandemic, first emerged in Wuhan, China, in 197 late 2019 and rapidly spread around the globe; WHO officially declared a COVID-19 pandemic 198 199 on March 11, 2020 (Cucinotta 2020). As of October 2022, more than 600 million cases had 200 been identified worldwide, with more than 6.5 million documented deaths. The CFR is about 1% among reported cases; however, the public-health impact of this virus has been much greater, 201 owing to the high transmissibility of the virus and the continued emergence of different variants 202 of concern (VOCs) with increased transmissibility and the ability to at least partially evade 203 antibody-induced immune protection from previous infection or vaccination. SARS-CoV-2 204 205 vaccines were fast-tracked for development at the start of the pandemic and vaccines first became available in August 2021 (FDA 2021). The pandemic is ongoing at this time. 206

207

208 The persistent threat of coronaviruses

209 Many emerging pathogens originate in wild animal reservoirs, with factors such as land-use

changes, disruption of natural ecosystems, increased urbanization, climate change, and wildlife

trade and consumption leading to increased interactions between humans and wild animals

212 (Cunningham 2017, Irving 2021). As the human population increases, the potential for "spill-

- 213 over" events from zoonotic reservoirs to humans also increases; therefore, we can expect that
- additional novel viruses will emerge in the future.
- 215
- Bats are a primary reservoir for several emerging viral pathogens, including Ebola, Nipah,
- 217 Marburg, and Hendra viruses. Both SARS-CoV-1 and MERS-CoV likely originated in bats, and
- then later adapted to palm civets (SARS-CoV-1) and dromedary camels (MERS-CoV) (El Sayed

2021). The source of SARS-CoV-2 has yet to be definitively determined; however, bats, with 219 220 other animal hosts potentially playing intermediate roles, remain the most likely possibility. Over 500 coronaviruses have been identified in various bat species (Chen 2014) and some 221 researchers have estimated that more than 3.000 coronaviruses can be found in bats (Anthony 222 223 2017); horseshoe bats are thought to be a primary reservoir for SARS-related coronaviruses in Russia and China (Hu 2017, Alkhovsky 2022). Additionally, bats are considered to be the major 224 evolutionary reservoir and ecological driver of coronavirus diversity globally (Anthony 2017). 225 226 Given that coronaviruses can evolve rapidly, we can expect that pathogenic coronaviruses will 227 emerge from the bat reservoir or some intermediate host in the future (El Sayed 2021). 228 229 Sarbecoviruses often undergo recombination, which can have evolutionary advantages. For example, researchers have postulated that the emergence of SARS-CoV-1 resulted from a 230 recombination event within an animal host that allowed the virus to bind to the human 231 angiotensin converting enzyme 2 (hACE2) receptor site on epithelial cells, which is the primary 232 target for viral entry (Wells 2021). The ability of sarbecoviruses to infect multiple host species in 233 234 addition to bats creates opportunities for coinfection, mutation, and recombination, which can 235 result in the emergence of novel sarbecoviruses with pandemic potential (Wells 2021, Ren 236 2008). 237 Recent research demonstrates that SARS-CoV-2 can infect multiple different animal species in 238 natural settings, including dogs, domestic cats, large wild cats (tigers, lions, etc.), gorillas, 239 ferrets, mink, and white-tailed deer (Sharun 2021). Based on the presence of ACE2 receptors in 240 host species, other animals may also be at risk of infection. Given the potential of the virus to 241 242 jump species, the possibility exists for SARS-CoV-2 to undergo recombination with other 243 coronaviruses, thereby generating a novel virus with renewed pandemic potential. 244 Coronaviruses have the potential to be highly pathogenic in humans, as illustrated by the 245 approximately 35% CFR for MERS-CoV and the 10% CFR for SARS-CoV-1. Fortunately, 246 MERS-CoV and SARS-CoV-1 do not spread efficiently between humans; however, we cannot 247 248 rule out the possibility that a highly pathogenic and highly transmissible coronavirus could emerge from a bat or intermediate host in the future. Given the ongoing threat posed by 249 250 coronaviruses, broadly protective vaccines are needed to protect against the emergence of 251 additional SARS-CoV-2 variants and future novel coronaviruses with pandemic potential. 252 Strategies for development and use of broadly protective coronavirus vaccines 253 254 Protection of infection versus protection against severe disease An important consideration for R&D of broadly protective coronavirus vaccines is defining what 255 256 is meant by "protection." Ideally, future coronavirus vaccines would protect against infection 257 and, in doing so, would not only prevent disease, but would also be transmission-blocking. This approach would decrease the level of circulating viruses in the population. Existing vaccines for 258 SARS-CoV-2 do not appear to protect against infection, but rather primarily protect against 259 260 severe disease and death. This allows SARS-CoV-2 viruses to continue to circulate, which in turn, can lead to viral mutagenesis and the potential for new VOCs to emerge. Creating 261

- transmission-blocking vaccines is challenging, however, and may require a strong mucosal
- 263 immune response. As preferred product characteristics for next-generation coronavirus
- vaccines are defined, it is likely that transmission-blocking will be considered aspirational or
- optimal, while preventing severe disease and death will continue to be the more realistic goal.
- 266

267 Breadth of protection

- Researchers have several options to consider when developing broadly protective coronavirusvaccines, including the following:
- <u>"Variant-proof" SARS-CoV-2 vaccines</u>: These vaccines would protect against all SARS-CoV-2 variants—those that have emerged and those that could emerge in the future.
- Vaccines that protect against a wide range of sarbecoviruses: These vaccines would
 include protection against SARS-CoV-1 and SARS-CoV-2 variants and, potentially,
 against other novel viruses in the sarbecovirus subgenus.
- Vaccines that protect against a wide range of betacoronaviruses vaccines: These
 vaccines would protect viruses in the betacoronavirus genus, including known human
 pathogens and potentially "pre-emergent" betacoronaviruses in zoonotic reservoirs that
 could spill over into humans.
- Vaccines that protect against a wide range of all coronaviruses: Such vaccines would
 protect against representative viruses from all of the coronavirus genera (including
 alphacoronaviruses, betacoronaviruses, gammacoronaviruses, and deltacoronaviruses),
 including the milder "common cold" species and any novel coronaviruses with pandemic
 potential.
- 284

Although betacoronaviruses are currently of greatest concern, the potential for 285 alphacoronaviruses or other coronaviruses to cause serious human disease is also of 286 importance and should not be minimized. Therefore, this roadmap is geared toward 287 development of broadly protective coronavirus vaccines, ultimately aimed at protecting against 288 all existing and emergent coronaviruses. A stepwise approach for vaccine development, 289 290 however, starting with the highest priority viruses and then gradually expanding coverage over time may be the most practical strategy. For example, vaccines against SARS-CoV-2 variants 291 292 may be the highest priority, followed by vaccines against sarbecoviruses, then merbecoviruses, 293 then all betacoronaviruses, then alphacoronaviruses, and finally, vaccines that additionally protect against a wide range of coronaviruses from the remaining two genera. 294

295

When designing broadly protective coronavirus vaccines applicable to one or more of the 296 categories outlined above, different approaches are possible. For next-generation SARS-CoV-2 297 298 vaccines, a primary strategy is to identify immunogens that generate broadly neutralizing antibodies against conserved regions of SARS-CoV-2 variants. Such vaccines can potentially 299 capitalize on the fact that SARS-CoV-2 viruses bind primarily to the hACE2 receptor on human 300 301 epithelial cells. Host cell binding is mediated through the receptor binding domain (RBD) on the 302 virus spike (S) glycoprotein, which appears to be relatively immunodominant, and neutralizing 303 antibodies to this area appear to inhibit receptor attachment in the host (although there is a 304 large mutational space in the RBD that can escape antibodies but still retain ACE2 binding 305 activity).

306

- 307 The search for broadly protective sarbecovirus vaccines is complicated by the fact that not all
- sarbecoviruses use hACE2 as the host receptor (Wells 2021). However, there may be other 308
- immunogenic epitopes on the S protein (e.g., within the RBD, the N-terminal domain [NTD], or 309
- subdomains of the S1 subunit or the S2 subunit) that are shared across sarbecoviruses; 310
- therefore, additional efforts to identify such epitopes are warranted (Yuan 2020). Several recent 311
- studies, for example, found that a SARS-CoV-2 RBD and spike nanoparticle with an adjuvant 312
- 313 elicited cross-neutralizing antibody responses against SARS-CoV-1, several SARS-CoV-2
- variants, and several bat coronaviruses (Joyce 2022, Saunders 2021). An alternative approach 314
- for developing broadly protective sarbecovirus vaccines is to generate vaccines that contain 315
- multiple representative immunogens from different clades within the sarbecovirus subgenus. 316
- such as through development of chimeric spike vaccines or mosaic/multiplexed nanoparticle 317
- vaccines (Cohen 2021, Cohen 2022, Martinez 2021, Walls 2021, Wuertz 2021). Prime-boost 318 strategies using different immunogens may offer a third option toward creating broadly
- 319
- protective sarbecovirus vaccines (Tan 2021). Finally, use of T cell epitopes and non-structural 320 321 proteins as immunogens is another option.
- 322

Similar approaches can be used for developing broadly protective betacoronavirus vaccines. 323

324 One recent study, for example, identified a monoclonal antibody that cross-reacts with the S

- glycoproteins from eight different betacoronaviruses, including all five betacoronaviruses known 325 to be pathogenic in humans (Sauer 2021). Studies such as this suggest that it may be possible 326
- to identify epitopes that are broadly protective and immunogenic across different genera of 327
- coronaviruses. Alternatively, multivalent approaches that combine immunogens from different 328
- 329 virus groups may enable the development of vaccines that protect across the different genera.
- 330

Use of broadly protective coronavirus vaccines 331

There are several strategies for using broadly protective coronavirus vaccines. 332

- The most expansive approach is to use broadly protective coronavirus vaccines as part 333 • 334 of routine childhood or adult vaccination programs (prophylactic use). This strategy would be an option if vaccines that are more durable can be developed (i.e., durability of 335 a year or more), and may be important if new SARS-CoV-2 variants continue to circulate 336 over time in the global population. 337
- Another approach is to use these vaccines to enhance pandemic preparedness by 338 339 having vaccines available that will protect against novel coronaviruses with pandemic potential if such viruses emerge from an animal reservoir (reactive use). Such vaccines 340 341 could be stockpiled in sufficient quantities for early use at the onset of an outbreak to 342 rapidly interrupt transmission and prevent escalation into a pandemic, with production to be scaled-up quickly as needed. This approach limits the lag time necessary to generate 343
- a new vaccine. 344
- 345

While several organizations have developed draft preliminary target product profiles (TPPs) for 346

- broadly protective coronavirus vaccines, an initial important step is to arrive at broad consensus 347
- among key stakeholders on a set of preferred product characteristics (PPCs) that clearly 348
- 349 articulate the minimal and optimal vaccine characteristics and outline how such vaccines will be

- used. Examples of properties for broadly protective coronavirus vaccines include the following:
- ability to prevent clinical disease (particularly severe disease); ability to protect against all
- 352 sarbecoviruses and merbecoviruses; ability to elicit rapid and robust immune responses;
- immunogenic in persons with preexisting immunity; safety and acceptability to the public; and
- suitability in all age groups, immunocompromised individuals, those who are pregnant, and
- other special populations (<u>Morens 2022b</u>). Other desirable properties include durability (for at
- least 1 year), effectiveness with one dose (or only a few doses), ability to prevent transmission,
- and affordability and suitability in LMICs (Morens 2022b).
- 358

359 360

TOPIC 1: VIROLOGY APPLICABLE TO VACCINE R&D

360 361 **/s**

Issue: Coronaviruses are globally distributed and the coronavirus universe has not been

362 well characterized.

363 Barriers

- Coronaviruses have the capacity to readily transmit within and between a wide, yet not fully defined, range of hosts (<u>Millet 2021</u>, <u>Morens 2022</u>, <u>Singh 2021</u>). Owing to their expansive presence in various geographic settings and diverse host species, efforts to better characterize this virus family through sampling and sequencing are inherently complicated by issues such as accessibility and scale (<u>Ghai 2021</u>, <u>Morens 2022</u>, <u>Terrier</u> <u>2021</u>).
- Bats (and possibly rodents to a lesser degree) are considered the primary zoonotic 370 • reservoir for coronaviruses, with other species likely serving as intermediate hosts 371 (Sánchez 2022). Bats are found on six of the seven continents and are the second most 372 diverse order of mammals, with more than 1,400 species identified. Moreover, more than 373 374 500 coronavirus species have been found in bats (Chen 2014) and researchers suggest 375 that the actual number may be more than 3,000 (Anthony 2017). This remarkable diversity and wide geographic range create major challenges for efforts to globally 376 characterize coronaviruses within the bat reservoir (Lattine 2020, Ruiz-Aravena 2021). 377
- While bats may be the primary reservoir, other animal hosts may play an important
 intermediate role between bats and humans (<u>Ghai 2021</u>, <u>Terrier 2021</u>); therefore, an
 improved understanding is needed of intermediate animal reservoirs to better define the
 risk of spillover events to humans (<u>Morens 2022</u>, <u>Ruiz-Aravena 2021</u>, <u>Terrier 2021</u>).
- SARS-CoV-2 has been transmitted from humans to a number of animal species such as
 mink, white-tailed deer, and large cats (referred to as reverse zoonotic transmission or
 zooanthroponosis) (Goraichuk 2021, Telenti 2022), which adds another layer of
 complexity to the coronavirus ecosystem.
- Efforts to further define the coronavirus universe elicit potential questions and concerns
 about biosafety and biosecurity, particularly regarding viruses with undefined
 characteristics and virulence or where gain-of-function research may be conducted.

389390 Gaps

- While recent efforts have been undertaken to expand sampling of wild and captive animals for coronaviruses, further work is needed to improve understanding of the geographic distribution, viral diversity, host range, and prevalence of this family of viruses and to link such information to vaccine R&D (<u>Baric 2022</u>, <u>Morens 2022</u>, <u>Terrier</u> <u>2021</u>).
- Further identification and characterization of diverse coronaviruses is needed to guide a coordinated, well-informed process of virus strain selection for research aimed at broadly protective coronavirus vaccine development (<u>Baric 2022</u>).
- To achieve this, a key consideration is to determine the degree of phylogenetic diversity of strains necessary to ensure adequate breadth of coverage for vaccine R&D. Therefore, obtaining viruses from the different genera will be

necessary to obtain representative sampling of coronaviruses that have potential 402 403 for spillover into human populations. 404 Betacoronaviruses are considered to be at high risk for spillover; therefore, research campaigns are particularly needed to better characterize these viruses. Group 2d 405 betacoronaviruses (hibcoviruses and nobicoviruses) are not available for study and virus 406 stocks of group 2c betacoronaviruses (merbecoviruses) are limited. 407 Availability of a wide range of coronaviruses for study can promote the discovery and 408 • characterization of conserved B and T cell epitopes that exist within different coronavirus 409 species, which is a critical issue for R&D of broadly protective vaccines (Baric 2022, 410 Morens 2022, Starr 2021). 411 • Serologic studies are important to improve understanding of the frequency and scale at 412 which exposure to coronaviruses occurs in various species and geographic settings. 413 Serosurveys of wild and captive animals could uncover potential reservoirs, which would 414 inform subsequent research efforts and risk assessments. Serosurveys in human 415 populations, particularly those living or working in close contact with known and potential 416 417 animal reservoirs, would help enhance understanding of exposure frequency and associated risk factors (Morens 2022, Ruiz-Aravena 2021, Sánchez 2022). 418 Procurement of accessible and sufficiently diverse cell lines that are readily susceptible 419 • to an array of bat-derived coronaviruses would support virus isolation and propagation 420 efforts, and facilitate genotypic and phenotypic characterization of bat-derived 421 coronaviruses (Letko 2020a). 422 A limitation in culturing and studying bat-derived coronaviruses in the laboratory is an 423 overall lack of accessible reagents; therefore, efforts are needed to ensure availability 424 and accessibility of the necessary reagents (Letko 2020a, Ruiz-Aravena 2021). 425 426 Issue: Coronaviruses frequently undergo mutation and recombination, which 427 complicates understanding and tracking host range and viral spread. 428 429 Barriers The wide geographic distribution of coronaviruses, the broad range of hosts, and the 430 • 431 large genome size offer ample opportunity for coronaviruses to undergo mutation and recombination (Morens 2022, Terrier 2021, Zhu 2020, Forni 2017, Kistler 2021, Millet 432 2021). This overall propensity to tolerate change applies to the spike protein (particularly 433 the S1 subunit), ultimately enabling the possibility of distinct modifications to occur within 434 435 or near antigenic sites without sacrificing viral fitness (Cotten 2021, Telenti 2022). The co-circulation of distinct coronaviruses among host species in the same geographic 436 • area can result in co-infections and subsequent recombination events (Lattine 2020. 437 438 Ruiz-Aravena 2021, Wells 2021). Evidence suggests that certain bat populations—which 439 can live in large colonies and share densely populated roosts with other speciesfrequently experience co-infections involving one or more coronaviruses (Ruiz-Aravena 440 441 2021). Co-infections can facilitate rapid viral adaptation to new hosts and ecologic environments (Forni 2017, Telenti 2022, Woo 2009). 442

443	•	Significant gaps in the phylogeny of coronaviruses limit assessment of their genetic and
444 445		antigenic diversity and complicates interpretation of historic evolutionary pathways (<u>Baric</u> 2022, <u>Singh 2021</u> , <u>Terrier 2021</u>).
446	•	Selective pressures on at least several human coronaviruses—including OC43, 229E,
446 447	•	and SARS-CoV-2—are dynamic and capable of altering antigenic sites (<u>Cameroni 2022</u> ,
448		Eguia 2021, Kistler 2021).
449	•	Current capacity for phenotypic characterization of coronaviruses is limited by the lack of
450 451		available tools, the high-level technical expertise required to perform such work, its time- consuming nature, and the associated costs (<u>Letko 2020a</u> , <u>Letko 2020b</u>). In turn, the
452		overall lack of functional characterization restricts the interpretation of genomic
453		sequencing data and delays understanding of the viral factors associated with traits such
454		as zoonotic potential and virulence (Letko 2020a, Telenti 2022).
455		
456	Gaps	
457	•	Bridging gaps in the phylogeny of coronaviruses is needed to:
458		 Develop a more comprehensive understanding of the genetic and antigenic
459		diversity of human and animal coronaviruses, which can ultimately inform
460		vaccine R&D (<u>Baric 2022</u>).
461		\circ Identify patterns that provide further insight on the frequency, timing, and role of
462		viral recombination.
463	•	Implementation of a collaborative, long-term effort to conduct genomic sequencing of
464		coronaviruses from various animal species across multiple, diverse regions of the globe
465		is needed to inform coronavirus surveillance and risk assessment to identify
466		coronaviruses with pandemic potential. Generated viral sequencing data that are open,
467		accessible, standardized (including metadata), and thorough would permit high-
468		throughput analyses that could ultimately help bridge phylogenetic gaps present in the
469		coronavirus virome and illustrate the diversity that exists across different populations and
470		geographic settings (<u>Baric 2022</u> , <u>Chen 2022</u> , <u>Morens 2022</u>).
471	•	Additional analysis of endemic seasonal human coronaviruses—comprised of
472		betacoronaviruses OC43 and HKU1 and alphacoronaviruses 229E and NL63—is
473		needed to gain additional insight on their evolutionary pathways and the mechanisms by
474		which they evolved (<u>Morens 2022</u>).
475	•	Investment in resources and global initiatives that expedite the functional
476		characterization of coronaviruses is important for deciphering the relationship between
477		genotype and phenotype and identifying genetic markers that can alter—and potentially
478		enhance—characteristics such as transmissibility, immune evasion, and virulence (Forni
479		<u>2017, Letko 2020a, Obermeyer 2022, Terrier 2021)</u> .
480	leeve	SARS CoV 2 variants of interest concern and high concernings will likely
481 482		SARS-CoV-2 variants of interest, concern, and high consequence will likely
482 483		ue to emerge, and expanded efforts are needed to track viral phylogenetic tion over time.
-100	Groiul	

484 Barriers

- The continued circulation and adaptability of SARS-CoV-2 over time has manifested in
 the emergence of multiple VOCs and descendent subvariants, raising the risk of immune
 evasion to existing vaccines or previous infection. The role of selective pressure from
 therapeutics and vaccines on VOC emergence over time remains unclear.
- The VOCs that have emerged to date have done so independently, with each leveraging 489 the characteristics conferred by its distinct constellation of mutations to outcompete 490 previously circulating variants (Obermeyer 2022, Telenti 2022). Although initial variants 491 displayed heightened infectivity, growing immunity in the population achieved through 492 vaccination or previous infection has potentially placed selective pressure on antigenic 493 evolution (Harvey 2021, Markov 2022, Yewdell 2021). The tolerance that SARS-CoV-2 494 495 has for significant changes in antigenic sites is apparent, with multiple VOCs and 496 descendent subvariants having noticeable impacts on the effectiveness of available vaccines and treatments, particularly in relation to occurrence of less severe disease 497 498 (Hachmann 2022, Mannar 2022).
- Existing disparities among countries and global regions in systems infrastructure, expertise, human and financial resources, and overall sequencing and surveillance capacity constrain the implementation of coordinated and uniform efforts to improve SARS-CoV-2 global genomic surveillance (<u>Chen 2022</u>, <u>Houtman 2022</u>). Even if infrastructure, funding, and expertise are available, wide variations in technology used for such ventures can slow data turn-around times and the associated costs can limit capacity.
- Research involving SARS-CoV-2 is classified as Biosafety Level (BSL)-3, which creates
 challenges for working with virus strains in the laboratory; efforts are needed to
 reclassify SARS-Cov-2 from BSL-3 to BSL-2.
- Genomic surveillance data for SARS-CoV-2 are available through the Global Initiative on Sharing All Influenza Data (GISAID) and other platforms; however, the data are not necessarily accurate or standardized and similar information for other coronaviruses is not easily accessible.
- Countries may not be willing to share coronavirus genomic or prevalence data quickly
 with the global scientific community because of concerns about public image, the
 potential for border closings, and economic implications (Mendelson 2021).
- Widespread and persistent circulation of SARS-CoV-2 in both human and animal populations elicits the theoretical possibility of recombination with other coronaviruses (<u>Telenti 2022</u>), which could propagate viruses with unanticipated characteristics.
 Furthermore, sustained circulation of SARS-CoV-2 among a range of wild and domestic animals presents the risk of long-term reservoirs that could result in divergent or recombinant strains and spillback into humans (<u>Peacock 2021</u>, <u>Pickering 2022</u>, <u>Rabalski</u> 2021, <u>Silva 2022</u>).
- The lack of a standardized nomenclature for variants, coupled with the fact that
 sequences are being made available on several databases and platforms without
 consistency across systems, obfuscates the interpretation and representativeness of
 available sequencing data for SARS-CoV-2 (<u>Chen 2022</u>, <u>Lancet 2021</u>).
- 527

528 **Gaps**

- Expanding global capacity to conduct genomic sequencing for SARS-CoV-2 (particularly 529 • in LMICs and other low-resourced settings) is critical for generating meaningful genomic 530 surveillance and obtaining a more comprehensive and representative understanding of 531 coronavirus distribution and evolution. In areas where this capacity already exists 532 (including expansion since the emergence of COVID-19), systems should be maintained 533 and a greater understanding of the specific barriers and bottlenecks that limit 534 sequencing and data sharing is needed. Furthermore, strategies are needed to build 535 laboratory capacity in a manner that is best integrated with existing programs to improve 536 537 systems while also preserving limited resources.
- Establishing the upload of raw, standardized genomic sequencing data and metadata to
 public databases as a norm, whenever possible, would enhance the ability to accurately
 interpret sequencing data, critically evaluate data sets, and provide opportunities for
 quality assurance.
- The effect, if any, of the Nagoya Protocol on virus sharing and the advancement of novel coronavirus vaccines should be assessed over time, including the impact of national Access and Benefit Sharing (ABS) legislation (CIDRAP 2021, Mueni Katee 2021).
- Building and sustaining collaborative international programs that are capable of quickly 545 identifying, characterizing, and sharing data on coronaviruses in human and animal 546 populations through standardized methods is vital for monitoring human coronavirus 547 evolution and understanding the impacts of antigenic changes (DeGrace 2022). More 548 specifically, data generated from such initiatives are important for both evaluating the 549 550 effectiveness of available vaccines and ensuring that broadly protective vaccine 551 candidates will protect against antigenically drifted variants. The WHO's Global Influenza Surveillance and Response System is a model for developing a coordinated network 552 (Harvey 2021, Subbarao 2021) and perhaps could be expanded to incorporate 553 coronaviruses; additionally, the WHO has launched the WHO BioHub System, which 554 may hold the potential to contribute to these issues. 555
- Efforts to expand the use of computational and machine learning tools for genome
 sequence data sets can improve capabilities for predicting SARS-CoV-2 virus evolution,
 which could assist in vaccine R&D aimed at broadly protective coronavirus vaccines
 (Telenti 2022).
- 560

561 **Issue:** Coronaviruses are capable of binding to different cell receptors and the breadth 562 and specificity of host-cell receptors for coronaviruses has not been fully elucidated.

563 Barriers

 Coronavirus spike proteins are capable of binding to a diverse array of cell receptors in both animals and humans, which helps facilitate their broad host ranges (Forni 2017, <u>Kistler 2021</u>, <u>Millet 2021</u>). For example, SARS-CoV-1 and SARS-CoV-2 utilize the angiotensin converting enzyme-2 (ACE2) receptor and MERS-CoV uses the dipeptidyl peptidase 4 (DPP4) receptor. For a number of coronaviruses, the host-cell receptor has yet to be characterized. 570 In addition to the receptor, an undefined array of host-cell factors, such as proteases, • often play a significant role in viral entry (Millet 2021). Receptor binding appears to be an 571 evolvable trait, with analyses suggesting that SARS-CoV-2 obtained its ability to use 572 hACE2 through recombination (Wells 2021). Notably, evidence exists of non-ACE2-573 using coronaviruses circulating in the same geographic areas with ACE2-using 574 575 coronaviruses, which poses the risk of shifting receptor usage and altering host ranges. In addition, many sarbecovirus RBDs can acquire the ability to bind to select ACE2 576 receptors from a single amino-acid change (Starr 2022). 577 Studying coronaviruses may involve gain-of-function research. Definitions regarding 578 • what constitutes gain-of-function research are not clear and are open to interpretation. 579 580 Furthermore, gain-of-function research is controversial and some policy makers believe that such research should be restricted, which could hinder important research 581 applicable to coronavirus vaccine R&D. 582 583 584 Gaps 585 Further research is needed to: • o Identify the main host-cell receptors to which different coronaviruses bind (Ghai 586 2021). In particular, defining the range of ACE2-using coronaviruses could 587 improve capacity to assess zoonotic risk (Wells 2021). For example, 588 coronaviruses identified in bats and pangolins have RBDs closely resembling 589 that of SARS-CoV-2, which can readily bind to hACE2 (Holmes 2021, Telenti 590 591 2022, Temmam 2022). Further understanding of the full range of host receptor binding is important for development of broadly protective coronavirus vaccines. 592 Understand, through deep mutational scanning, what residue changes confer 593 0 loss or gain of binding to key human receptors such as ACE2 or DPP4. 594 595 Determine the presence or absence of host-cell receptors and additional factors 0 (such as proteases) important for viral entry and map their distribution across 596 different species and in different tissue types to determine tissue tropism (Hu 597 2020, Millet 2021, Ruiz-Aravena 2021). 598 599 Strategic Goals and Aligned Milestones 600

601Strategic Goal 1.1: Enhance and sustain the capacity to identify, characterize, and share602SARS-CoV-2 variants of interest, concern, and high consequence among researchers

603 **globally.**

604 Milestones:

a. By 2023, initiate the risk assessment and decision-making processes necessary to reclassify Biosafety Level (BSL) requirements for SARS-CoV-2 from BSL-3 to BSL-2.
b. By 2023, develop a strategy to ensure that the global capacity developed during the COVID-19 pandemic to conduct genomic sequencing of SARS-CoV-2 viruses sampled from humans can be maintained over time, particularly in low-resource settings.
c. By 2023, improve standardization of SARS-CoV-2 genomic sequencing data and metadata (including nomenclature) to enhance accurate interpretation and use. d. By 2024, generate a sustainable collaborative international program for quickly

- 613 identifying, characterizing, and sharing antigenic information on SARS-CoV-2 viruses
- identified in humans, potentially building on what currently exists for influenza, such as
 the WHO's Global Influenza Surveillance and Response System (<u>GISRS</u>) (<u>Harvey 2021</u>,
- 616 <u>Subbarao 2021</u>).
- 617
- 618 Strategic Goal 1.2: Improve characterization of the coronavirus universe to determine the 619 diversity of strains necessary to ensure adequate breadth of coverage for vaccine R&D.

620 Milestones:

- a. By 2023, establish best practices and standard operating procedures for research (in the
 field and in the laboratory) involving coronaviruses of unknown pathogenicity to ensure
 that biosafety and biosecurity risks are minimized.
- b. By 2023, initiate research campaigns aimed at: (1) identifying additional bat-derived
 coronaviruses (particularly group 2d betacoronaviruses) and (2) generating critical
 reagents needed to study such viruses.
- c. By 2024, develop a coordinated international framework to enhance sampling of both
 wild and captive animal populations (particularly bats) in geographically diverse regions
 for improving understanding of the distribution, viral diversity, host range, and
 prevalence of coronaviruses globally (Baric 2022, Morens 2022, Terrier 2021).
- d. By 2024, ensure availability of reagents (such as reference monoclonal antibodies for antigen characterization) necessary for evaluating priority coronaviruses (<u>Letko 2020a</u>, <u>Ruiz-Aravena 2021</u>).
- e. By 2024, devise an approach to prioritize and select coronavirus strains that would
 comprise an optimally diverse panel to be used in vaccine R&D for assessing breadth of
 protection (<u>Baric 2022</u>). Selection should initially focus on coronaviruses that: (1) use the
 hACE2 receptor, (2) grow in primary human cells, (3) are genetically diverse, (4) have
 been antigenically characterized, and (5) have strains available for study.
- f. By 2025, ensure that one or more panels of virus stocks featuring different
 coronaviruses and diverse cell lines that are readily susceptible to a wide range of
 coronaviruses are accessible to researchers working on coronavirus vaccine R&D (<u>Letko</u>
 2020a, Ruiz-Aravena 2021).
- g. By 2025, develop the serologic platforms needed for conducting serosurveillance studies
 in high-risk populations (based on a diverse panel of coronaviruses that may pose a risk
 to human health) to identify signals suggesting the potential for spillover from animals to
 humans.
- 647 h. By 2025, establish a global framework for serosurvey methodologies (including 648 populations to study) to help synchronize study designs.
- 649

650 Strategic Goal 1.3: Improve understanding of the phylogenetic evolution over time of 651 animal-derived coronaviruses.

652 Milestones:

- a. By 2023, initiate and implement a collaborative, coordinated and sustainable effort to
 conduct genomic sequencing of coronaviruses from relevant animal species sampled
 across multiple regions of the globe and ensure that the generated viral sequencing data
 are openly accessible with standardized metadata (<u>Baric 2022</u>, <u>Chen 2022</u>, <u>Morens</u>
 2022).
- 658

659 Strategic Goal 1.4: Improve understanding of the breadth of host-cell receptors for 660 coronaviruses.

661 Milestones:

- a. By 2027, identify the host-cell receptors to which a range of different coronaviruses bind,
 with an initial focus on priority viruses, such as betacoronaviruses, to determine the
 species distribution for different receptors (Ghai 2021).
- b. By 2028, once host-cell receptors are identified for different coronaviruses, determine
 which are present in humans (<u>Hu 2020</u>, <u>Millet 2021</u>, <u>Ruiz-Aravena 2021</u>). For those
 host-cell receptors that are present in humans, assess the distribution across various
 tissue types in both humans and commonly used animal models to determine tissue
 tropism.
- 670671 Additional Research Priorities
- Continue to obtain additional SARS-CoV-2 isolates over time and ensure that these
 isolates are made equally accessible to suitable researchers, which could broaden
 phenotypic characterization.
- **Perform** additional analyses of endemic seasonal human coronaviruses to further understand the pathways and mechanisms of coronavirus evolution.
- Conduct ongoing high-throughput analyses of genomic sequence data for diverse
 coronaviruses to bridge phylogenetic gaps present in the coronavirus universe and
 improve understanding of the antigenic diversity of these viruses.
- **Update** the supply of necessary reagents routinely as additional viruses are identified.
- **Expand** the use of computational and machine learning tools for genomic sequence data sets to improve capabilities for predicting SARS-CoV-2 virus evolution.
- **Ensure** that raw genomic sequencing data on SARS-CoV-2 sequences are readily and widely accessible whenever possible.
- Expand the functional characterization of coronaviruses to improve understanding of the
 relationship between genotype and phenotype of coronaviruses (Forni 2017, Letko
 <u>2020a</u>, Obermeyer 2022, Terrier 2021).
- Continue to build global infrastructure and capacity for conducting virologic
 surveillance, particularly in LMICs.
- Assess on an ongoing basis the risks and benefits of gain-of-function research related
 to coronaviruses to ensure that such research meets acceptable bioethical and safety
 standards.
- 693
- 694

695 **TOPIC 2: IMMUNOLOGY AND IMMUNE CORRELATES OF PROTECTION**

Issue: An improved understanding is needed regarding the mechanisms of mucosal and systemic immunity relevant to SARS-CoV-2 infection and the development of broadly protective coronavirus vaccines.

Barriers 699 Innate and adaptive immune responses to SARS-CoV-2 and other coronaviruses involve 700 • 701 complex, interrelated physiologic mechanisms and biomarkers that are inadequately 702 understood. Fundamental questions remain concerning the nature of protective and cross-protective immunity to coronavirus infection and vaccination (Diamond 2022, 703 704 Siggins 2021). Various host and environmental factors, such as age, sex, comorbidities, and 705 geographic location, influence protective immune responses to viral antigens, which can 706 707 complicate research on broadly protective coronavirus vaccines (Tomalka 2022). Mucosal immunity is likely to be important for protection against coronavirus infection 708 • 709 and transmission, since coronaviruses are respiratory pathogens that do not have 710 obligate viremic spread (Yewdell 2021). This creates a number of important challenges, since the role of mucosal immune protection is not well elucidated, nor are the strategies 711 to stimulate and measure mucosal immunity (Iwasaki 2016, Lavelle 2021). 712 • Obtaining appropriate and adequate clinical samples for studying mucosal and systemic 713 immunity related to coronavirus virus infection can be challenging for researchers 714 715 (Logue 2022). 716 717 Gaps A greater understanding is needed of innate and adaptive immunity, which is critical for 718 developing vaccines to control respiratory infections such as COVID-19 (Sette 2021), 719 720 particularly with regard to preventing severe disease, but also potentially preventing 721 infection and transmission. Specifically, information is needed to clarify the following: How innate immunity influences adaptive (B cell and T cell) immune responses to 722 0 SARS-CoV-2 infection, such as determining the signaling pathways underlying 723 establishment of long-lived plasma cells and memory T cells (Tomalka 2022, 724 725 Sette 2021). The potential for improving breadth of protection against coronaviruses by 726 0 stimulating innate "trained" immunity (Mettelman 2022, Tayar 2022, Ziogas 727 728 2022). 729 The role of the three main components (B cells, CD4 T cells, and CD8 T cells) of 0 adaptive immunity to SARS-CoV-2 virus infection and vaccination (and to other 730 coronaviruses), with a focus on their specific functions and kinetics (Moss 2022, 731 Sette 2021, Sette 2022, Wherry 2022); this includes a specific focus on the role 732

733of key subpopulations, such as T follicular helper cells, regulatory T cells, and734memory T cells (Kent 2022, Moss 2022, Tarke 2022, Zheng 2021).

735 736 737	0	The role and mechanisms of adjuvants in mediating interactions between innate and adaptive immune responses (<u>Carmen 2021</u> , <u>Lee 2022</u>) (e.g., driving breadth of response via CD4 T cell activation) (<u>Joyce 2022</u>).
738	0	The relative roles of mucosal versus systemic immunity in protecting against
739		coronavirus infection and limiting the potential for virus transmission (Mettelman
740		<u>2022, Poland 2021)</u> .
741	0	The role of T cells for: viral clearance, preventing infection in the absence of
742		seroconversion, limiting the extent of disease following infection, generating
743		robust immune memory, and responding to different viral variants (Wherry 2022).
744	0	Defining the features of an optimal coordinated cellular immune response to
745		primary SARS-CoV-2 infection and determining the optimal vaccine-elicited
746		cellular immune responses needed to prevent infection and transmission, which
747		could in turn prevent the emergence of new viral variants (Moss 2022).
748	0	The immune responses to different vaccine constructs and strategies for
749		administering them (including different routes such as intranasal, transdermal
750		and intramuscular administration), particularly regarding tissue resident memory
751		(T_{RM}) cells in B and T cell populations in the upper and lower respiratory tracts
752		(<u>Mettelman 2022</u> , <u>Nelson 2021</u>).
753	0	The processes by which immune dysregulation may contribute to severe COVID-
754		19 disease following infection and the implications for development of next-
755		generation vaccines, particularly with regard to determining the role that CD8 T
756		cell responses or the innate immune response may play in stimulating pro-
757		inflammatory reactions or enhanced immunopathology (<u>Ahmed-Hassan 2020</u> , Zhang 2021)
758		Zheng 2021).
759 760		nologic assays, including high-throughput neutralization assays and T cell assays, a minimum are qualified and ideally are validated, are needed to evaluate broadly
761		tive coronavirus vaccines (e.g., to determine the effect of pre-immune status on
762	•	e performance; evaluate vaccine performance in naïve or vulnerable populations;
763		are immune kinetics, immune memory, and breadth and durability of protection;
764		evelop correlates of protection) (Baric 2022, Goldblatt 2022a, Vardhana 2022).
765		rkers for innate immunity are needed to evaluate and predict mechanisms of the
766		ve immune response to coronavirus infection (<u>Espinoza 2022</u>).
767	udupti	
768	Issue: The m	echanisms for stimulating broadly protective immune responses that are
769		e against different coronaviruses are not well defined.
770	Barriers	
771	• SARS	-CoV-2 evolves rapidly, leading to the emergence of new viral variants capable of
772	escapi	ing antibody-induced immune protection from vaccination or prior infection.
773	 To dat 	e, many of the available SARS-CoV-2 vaccines focus on generating neutralizing
774	antibo	dies to the RBD of the S protein, an immunodominant region prone to mutation.
775		nmunodominance of the S protein could complicate the incorporation of other
776	conse	rved epitopes, which may be immunosubdominant, in future vaccine development.

777	 Memor 	ry B cell responses mature relatively slowly, which may be an important limitation
778	for imn	nune protection against infection and disease (particularly non-severe disease)
779	caused	by new viral variants with shorter incubation periods (such as Omicron)
780	compa	red with the ancestral SARS-CoV-2 strain.
781		
782	Gaps	
783		ologic research in the following areas is needed for generating broadly protective
784	corona	virus vaccines:
785	0	Develop a detailed understanding of the human antibody response to SARS-
786		CoV-2 and other coronaviruses (Pecetta 2022).
787	0	Identify epitopes (other than the RBD of the S protein) that generate neutralizing
788		humoral immunity and are conserved across different viruses (J Cohen 2021,
789		<u>Crowe 2022, Martinez 2021, Saunders 2021, Walls 2021</u>).
790	0	Identify T cell epitopes that may provide broader cross protection against
791		different coronaviruses by stimulating CD4 and CD8 T cell responses.
792	0	Evaluate the potential for conserved epitopes to drift or remain stable under
793		immune pressure (e.g., when used as an antigenic target for broadly protective
794		vaccines).
795	0	Evaluate whether prior infections to previously or currently circulating
796		coronaviruses, such as SARS-CoV-1 and the common cold coronaviruses,
797		provide cross-protection against heterologous human coronaviruses (Dangi
798		<u>2021, Moss 2022)</u> .
799	0	Identify broadly neutralizing antibodies against the conserved S2 region of the
800		spike protein, which may be important for developing broadly protective
801		coronavirus vaccines (Zhou 2022).
802	0	Promote understanding of the role of binding but non-neutralizing antibodies vs.
803		neutralizing antibodies produced by SARS-CoV-2 vaccines (Poland 2021).
804	0	Identify mechanisms underlying the induction of broadly protective memory B
805		cells.
806	0	Determine the kinetics and magnitude of B cell response to conserved antigens
807		sufficient to provide broad protection from coronavirus infection, independently or
808		in combination with T cell responses, for different vaccine platforms (Sette 2022).
809	0	Determine whether increased levels of broadly reactive antibodies exacerbate
810		autoimmune disease by increasing autoreactive antibodies (Labombarde 2022).
811	0	Determine the relative contribution of multiple arms of the immune system
812		(including T cells, non-neutralizing antibodies, neutralizing antibodies to
813		conserved epitopes, innate immune responses, and mucosal immunity) in
814		eliciting broadly protective immunity (<u>Hauser 2022</u>).
815		
816	Issue: The m	echanisms underlying long-term immune responses to coronaviruses
817		er clarification.

818 Barriers

819	•	Because initial SARS-CoV-2 infection occurs primarily in epithelial cells on mucosal
820		surfaces, there is limited involvement of systemic immunity and protective immunity
821		following infection or injected vaccines is short-lived (Morens 2022b). This is also
822		potentially true for other coronaviruses that cause infection in humans (Belyakov 2009,
823		Karczmarzyk 2022).
824	•	More information is needed on the length of time that protective immunity (either against
825	-	infection or against development of severe disease) can possibly be sustained for
826		coronaviruses through vaccination is unknown.
827	•	Immune memory responses elicited by vaccines, involving primarily long-lived plasma
828	•	cells and memory B cells, are critical for inducing long-term protection, but the
829		mechanisms and determinants of the process are incompletely understood (<u>Gaebler</u>
830		<u>2021, Inoue 2022, Laidlaw 2022, Siggins 2021)</u> .
831	Cana	
832	Gaps	
833	•	Further research is needed to:
834		 Understand how prime vaccination, boosting, and immune memory processes
835		interact, leading to broadly protective immunity.
836		 Determine the factors that influence duration of antibody and memory B and T
837		cell responses following SARS-CoV-2 infection or vaccination (Bhattacharya
838		2022, Moss 2022, Siggins 2021, Tarke 2022), particularly regarding protection
839		against heterologous strains.
840		 Identify the determinants of longevity for antigen-specific plasma cells in bone
841		marrow and in mucosa-associated lymphoid tissue (Siggins 2021).
842		 Identify mechanisms that promote persistence of the germinal center following
843		infection and/or vaccination, which is needed to establish immune memory
844		(<u>Laidlaw 2022</u>).
845		\circ Define the role of T_{RM} cells in the upper and lower respiratory tract in promoting
846		durability of immune protection (<u>Nelson 2021</u> , <u>Sette 2022</u>).
847		
848	Issue	The impact of preexisting partial immunity to SARS-CoV-2 (infection-acquired and
849	vaccii	ne-mediated) on future vaccinations is unknown.
850	Barrie	ure and the second s
851		Much of the world's population has either been infected with SARS-CoV-2 or has been
852	•	vaccinated against the virus, which complicates research aimed at understanding
853		protective immunologic responses to new vaccines.
854	•	Regional differences likely exist with regard to past exposures to other coronaviruses,
855	•	which further complicates research efforts.
		which further complicates research enorts.
856 857	Gane	
	Gaps	Eurther research is peeded to:
858	•	Further research is needed to:
859		• Determine levels of baseline immunity to coronaviruses in different populations
860		and assess the impact of preexisting heterosubtypic immunity (e.g., from prior
861		infection with SARS-CoV-1, MERS-CoV, common cold coronaviruses, and

862	SARS-CoV-2 variants) on susceptibility to infection and disease from future
863	coronavirus exposures (<u>Bean 2021, Tan 2021, Yu 2022</u>).
864	 Identify mechanisms of imprinting by population characteristics and immune
865	responses to previous exposure to coronavirus vaccines or infection (Mettelman
866	<u>2022, Pecetta 2022)</u> .
867	 Improve understanding of antigenic imprinting to the S protein, which is important
868	for developing vaccines designed to stimulate immune responses to future
869	SARS-CoV-2 variants and to a broad range of other coronaviruses.
870	 Better understand glycan masking of antigenic epitopes by preexisting antibodies
871	(from vaccination or infection), the role of glycoprotein chemistry in immune
872	imprinting, and its implications for designing broadly protective coronavirus
873	vaccines (<u>Zarnitsyna 2015</u>).
874	 Clarify the interaction between preexisting immunity and subsequent response to
875	vaccination, including immune kinetics, breadth of protection, and the role of
876	immune memory (<u>Sette 2022)</u> .
877	 Determine how a primed immune system can be reprogrammed or whether
878	preexisting immunity will dominate recall responses (Pecetta 2022).
879	
880	Issue: Additional correlates of protection are needed for assessing broadly protective
881	coronavirus vaccines.
882	A correlate of protection (CoP) is a measureable biomarker used to reliably predict the
883	level of vaccine efficacy against a clinical outcome (e.g., vaccine-induced protection
884	against infection, severe disease, or post-acute sequelae of SARS CoV-2 infection
885	[PASC])" (Sherman 2022). The use of CoPs can facilitate down-selecting and vetting
886	promising broadly protective vaccine candidates for clinical trials and can streamline
887	various aspects of late-stage evaluation, potentially bypassing large-scale field trials by
888	providing a primary endpoint for provisional or traditional approval of vaccines for
889	specified contexts of use (Karim 2021, Openshaw 2022, Plotkin 2010).
890	· · · · · · · · · · · · · · · · · · ·
891	Barriers

- Neutralizing antibodies have been identified as a potential CoP for protection against symptomatic SARS-CoV-2 infection; however, CoPs for broadly protective coronavirus vaccine outcomes have yet to be clearly defined and will likely include additional measures of adaptive and innate immune responses (Britto 2022, Gilbert 2022, Khoury 2021, Morens 2022b). This may reduce the expediency of advancing new vaccines through evaluation, regulatory approval, and post-licensure updating.
- CoPs against coronavirus infection may be distinct from those against severe disease
 and CoPs for mucosal immunity may be distinct from those for systemic immunity
 (Goldblatt 2022a).
- CoPs for broadly protective vaccines will need to take into account widespread
 exposures to SARS-CoV-2 antigens via prior vaccination and/or infection.
- CoPs can vary depending on the viral load at exposure, the role of immune memory,
 individual characteristics such as overall immunostatus, and the method used to detect

905 906 907 908	•	the CoP (<u>Misra 2022</u>). This creates obstacles for defining the necessary biomarkers to predict coronavirus vaccine efficacy. Determining CoPs is complicated by the absence of standardized or harmonized clinical trial endpoints for broadly protective and durable coronavirus vaccines (<u>Misra 2022</u> ,
909		Pecetta 2022).
910	•	T cell assays may be important for identifying CoPs for broadly protective coronavirus
911	-	vaccines; however, they are technically more difficult and costly than serologic assays,
912		and techniques for measuring T cells are currently impractical for clinical trials (<u>Goldblatt</u>
913		<u>2022a</u>).
914	•	Different vaccine platforms may have different protective immune mechanisms leading
915		to different CoPs, which can complicate efforts to evaluate vaccine efficacy (Sui 2021).
916	•	Studying the persistence of antibodies following infection is complicated by the lack of
917		standardization of antibody assays, differences in sensitivity and specificity of
918		commercially available assays, and the characteristics of participants studied (Goldblatt
919		<u>2022a</u>).
920		
921	Gaps	
922	•	To identify CoPs for broadly protective and durable coronavirus vaccines, research is
923		needed to determine the following:
924		 The underlying immune mechanisms of adaptive (humoral and cellular) and
925		innate immune responses that mediate protection against coronavirus infection
926		and disease in different tissues and physiologic compartments, including sites of
927		virus entry and propagation (in the mucosa and dissemination in the blood), and
928		in different populations by age, sex, preexisting immunity, exposure histories,
929		and other relevant characteristics (e.g., ethnicity) (<u>Britto 2022, Rodda 2022</u> ,
930 021		Sherman 2022, Sui 2021, Tan 2022).
931 932		• The kinetics of each relevant type of immune response in the various compartments at different phases of infection, which has implications for the
932 933		timing of sampling for CoP measurement. Different biomarkers have different
933 934		durability profiles (e.g., anti-spike neutralizing antibody titers that correlate with
935		short-term protection from symptomatic COVID-19) (<u>Huang 2020</u>).
936		 Protective thresholds (i.e., a biomarker above a CoP threshold implies a high
937		level of vaccine protection) for different key immune responses in appropriate
938		animal models after infection, vaccination, or both ("hybrid immunity") (Misra
939		2022, Survawanshi 2022, Vardhana 2022), which are important for evaluating
940		vaccine candidates, consistency of production, and updates over time (Goldblatt
941		2022b, Krammer 2021). Protective thresholds also are needed for different
942		clinical endpoints (<u>Sherman 2022</u>).
943		 While protective thresholds provide the most practically useful CoPs, the goal to
944		reliably predict vaccine efficacy in some clinical context of use can be potentially
945		satisfied with a CoP that uses the whole distribution of the immunologic
946		biomarker or uses other features besides a threshold cut-off such as geometric
947		mean. The requirement is to validate a statistical algorithm for predicting vaccine

948	efficacy based on measuring the immunological biomarker from a sample of
949	vaccine recipients (and possibly also from another group of comparator vaccine
950	recipients for comparison), where this algorithm may or may not make use of a
951	threshold cut-off for the CoP.
952	• There is a potential need for multiple biomarkers to increase the reliability of
953	measurements for different intended outcomes (Jang 2020, Misra 2022, Plotkin
954	2020). Key components relevant to durable and broadly protective immune
955	responses include neutralizing antibodies, memory B cells, Fc effector
956	antibodies, and CD4 and CD8 T cell functions (Goldblatt 2022a, Kaplonek 2022,
957	McGrath 2022).
958	Reliable CoPs will be needed for different coronavirus vaccine constructs, based on
959	different antigens (potentially strain-specific and broadly protective antigens), different
960	vaccine platforms, and different modes of administration, in conjunction with the
961	development of appropriate animal models and the establishment of regulatory
962	pathways for their review (<u>Krammer 2022</u>).
963	• Even though neutralizing antibodies to the S protein appear to be a reasonable CoP for
964	SARS-CoV-2, the titers that correlate with protection in populations with different
965	histories of exposure to SARS-CoV-2 viruses need to be determined (Simon 2022).
966	Research into CoPs for additional coronaviruses will require the availability of the
967	necessary reagents and virus stocks.
968	• Defining and harmonizing clinical or efficacy endpoints is necessary for determining and
969	comparing CoPs for different vaccines (<u>Sherman 2022</u>).
970	• Standardized, validated high-throughput assays for T cell responses are needed to
971	advance CoP development and facilitate their use in clinical trials (Goldblatt 2022a,
972	Huang 2020, McGrath 2022, Misra 2022, Pecetta 2022, Vardhana 2022).
973	 Innovation is needed to scale up T cell assays by simplifying sample collection and
974	storage, and standardizing data collection and laboratory methods.
975	A central database that includes potential CoPs for current vaccines could potentially be
976	useful to assess multiple variables as CoPs and to test if a CoP identified in one trial is
977	valid in other trials (Karim 2021). Depending on the use/immunobridging application of a
978	CoP, the CoP may differ and the means to validate the CoP may differ; accordingly, the
979	central database needs to include adequate meta-data to support the ability of data
980	analyses to meet objectives.
981	• Once one or more CoPs are identified, standardized assays are needed for that CoP to
982	ensure comparability between different vaccine platforms, modes of administration, and
983	conditions of use (Sherman 2022, Krammer 2022). Given rapid emergence of new
984	coronavirus genotypes, a particular challenge is achieving a common or otherwise
985	comparable scale of CoPs to different genotypes.
986	
987	Strategic Goals and Aligned Milestones
988	Strategic Goal 2.1: Ensure that clinical samples and immunoassays are available to the
989	research community for improving understanding of the mechanisms of mucosal and
000	systemic immunity related to SAPS-CoV-2 infection

990 systemic immunity related to SARS-CoV-2 infection.

991

992 Milestones:

- a. By 2023, develop a centralized or virtual biorepository of historical (pre-COVID-19
 pandemic) clinical samples to include mucosal (e.g., nasal lavage and saliva) and
 serological samples that are currently available from a range of research laboratories,
 potentially by tapping into existing biobanks.
- b. By 2024, establish a centralized or virtual biorepository involving a new cohort of
 subjects from multiple regions of the world, to include those with breakthrough SARSCoV-2 infections, for obtaining high-impact (e.g., mucosal, bronchoalveolar lavage,
 serologic, bone marrow), appropriately collected and timed clinical samples.
- 1001 c. By 2024, establish a governance structure for collection and use of specimens from the 1002 biorepositories, to include strategies for promoting specimen sharing.
- 1003d. By 2024, create a plan for assay development aimed at generating assays to answer the1004key immunologic mechanistic questions related to SARS-CoV-2 that the biorepository1005samples can address.
- e. By 2025, develop new immunologic assays as outlined in the plan and ensure that such
 assays are appropriately harmonized, standardized, and reproducible.
- 1008f.By 2027, develop immunologic assays for a broader range of coronaviruses that are1009harmonized, standardized, and reproducible.

1010 Strategic Goal 2.2: Define mechanisms of mucosal and systemic immunity relevant to 1011 SARS-CoV-2 infection and the development of broadly protective coronavirus vaccines.

1012 Milestones:

- 1013a. By 2024, determine how SARS-CoV-2 variants (and potentially other coronaviruses)1014evade antibody responses.
- 1015b. By 2025, define the initial humoral mechanisms of protection at the mucosal barrier for1016SARS-CoV-2 infection.
- c. By 2026, determine how SARS-CoV-2 variants (and potentially other coronaviruses)
 evade T cell responses.
- 1019d. By 2027, define the initial cellular mechanisms of protection at the mucosal barrier for1020SARS-CoV-2 infection.
- e. By 2027, determine mucosal biomarkers that are predictive of mucosal immune
 protection against SARS-CoV-2 infection.
- f. By 2027, develop a "mucosal immunity atlas" to collect and organize information on
 innate and adaptive coronavirus mucosal immunity that maps responses across different
 age groups and geographies.
- 1026 g. By 2027, determine the relative roles of mucosal (in the upper and lower airways) versus 1027 systemic humoral immunity in protecting against coronavirus infection and limiting the 1028 potential for virus transmission (Mettelman 2022, Poland 2021).
- 1029
- 1030 Strategic Goal 2.3: Clarify mechanisms for stimulating broadly protective mucosal and 1031 systemic immune responses that are cross-reactive for different coronaviruses.
- 1032 Milestones:

- a. By 2024, identify epitopes (other than the RBD area of the S protein) that generate
 protective humoral immunity and are conserved across different virus types (Cohen
 <u>2021</u>, <u>Crowe 2022</u>, <u>Martinez 2021</u>, <u>Saunders 2021</u>, <u>Walls 2021</u>).
 b. By 2025, identify broadly protective antibodies against the conserved S2 region of the
- 1036b. By 2025, identify broadly protective antibodies against the conserved S2 region of the1037SARS-CoV-2 spike protein, which may be critical for developing broadly protective1038coronavirus vaccines (Zhou 2022).
- c. By 2025, identify mechanisms underlying the induction of broadly protective antibodies,
 such as via production and recall of long-lived memory B cells that recognize conserved
 epitopes in SARS-CoV-2 viruses (<u>Qi 2022</u>).
- 1042 d. By 2026, identify T cell epitopes for non-spike proteins that may provide broad cross 1043 protection against different coronaviruses by stimulating CD4 and CD8 T cell responses.
- 1044

1052

1053

1054

Strategic Goal 2.4: Understand the mechanisms of durability of immune protection from SARS-CoV-2 and other coronaviruses.

1048 Milestones:

- 1049a. By 2024, determine initial factors that influence duration of antibody and memory B and1050T cell responses following SARS-CoV-2 infection or vaccination (such as persistence of1051the germinal center) (Bhattacharya 2022, Moss 2022, Siggins 2021, Tarke 2022).
 - By 2029, identify the determinants of longevity for antigen-specific plasma cells in bone marrow and in mucosa-associated lymphoid tissue (<u>Siggins 2021</u>).

1055 Strategic Goal 2.5: Improve understanding of the impact of preexisting immunity

1056 *(infection-acquired and vaccine-mediated) on immune responses to future circulating* 1057 *coronaviruses.*

1058 Milestones

- a. By 2025, clarify the interaction between preexisting immunity to coronaviruses and 1059 subsequent response to vaccination (such as looking at immune kinetics, breadth of 1060 protection, the role of epitope masking, and the role of immune memory) (Sette 2022). 1061 1062 b. By 2026, ensure that longitudinal cohort studies are implemented to determine levels of baseline immunity to coronaviruses in geographically diverse populations and assess 1063 the impact of preexisting heterotypic immunity (e.g., from prior infection with SARS-CoV-1064 1, MERS-CoV, common cold coronaviruses, and SARS-CoV-2 variants) on susceptibility 1065 to infection and disease from future coronavirus exposures (Bean 2021, Tan 2021, Yu 1066 <u>20</u>22). 1067 c. By 2027, identify mechanisms of imprinting by population characteristics and immune 1068 responses to previous exposure to coronavirus vaccines or infection (Mettelman 2022, 1069 1070 Pecetta 2022). 1071 d. By 2028, determine how preexisting immunity affects recall responses and how a primed immune system can be induced to generate broadly protective immune responses to 1072
- 1073 divergent coronaviruses (<u>Pecetta 2022</u>).
- 1074

1075 Strategic Goal 2.6: Identify mechanistic correlates of protection for vaccine-induced 1076 immunity against SARS-CoV-2 and potentially other coronaviruses.

1077 Milestones:

- 1078a. By 2023, create a central database (primarily from observational studies) that includes1079potential CoPs for current SARS-CoV-2 vaccines to allow different investigators to1080assess multiple or alternative CoPs (Karim 2021), with new information being added as it1081becomes available.
- b. By 2025, define and harmonize the clinical or efficacy endpoints (e.g., mild vs. severe disease) for determining and comparing CoPs for different vaccines (<u>Sherman 2022</u>).
 (Also see the Vaccinology section.)
- c. By 2026, identify statistically validated CoPs for predicting efficacy of SARS-CoV-2
 vaccines based on different key immune responses for different clinical endpoints and
 for different viral variants that have different intrinsic infectivity and transmissibility.
- 1088d. By 2027, determine whether assays for T cell responses or surrogate markers for T cell1089responses could serve as CoPs.
- e. By 2027, conduct studies in animal models to identify CoPs for at least several
 coronaviruses other than SARS-CoV-2.
- 1092 f. By 2027, determine one or more CoPs for mucosal vaccines.
- g. By 2028, determine whether multiple biomarkers are needed to increase the
 performance of a CoP for predicting vaccine efficacy (Jang 2020, Misra 2022, Plotkin
 2020) (such as neutralizing antibodies, memory B cells, Fc effector antibodies, and CD4
 and CD8 T cell functions [Goldblatt 2022a, Kaplonek 2022, McGrath 2022]).
- h. By 2028, ensure that one or more CoPs are validated.
- i. By 2028, standardize and develop mechanisms to harmonize CoP assays to facilitate
 comparability among different vaccine platforms and modes of administration (<u>Sherman</u>
 2022, Krammer 2022).

1102 Additional Research Priorities

1101

- Continue to study how innate immunity influences adaptive (B cell and T cell) immune
 responses to SARS-CoV-2 infection (<u>Sette 2021</u>, <u>Tomalka 2022</u>), particularly among
 different age groups.
- Develop a detailed understanding of the human antibody response to SARS-CoV-2 and other coronaviruses (Pecetta 2022).
- Determine the potential for improving breadth of protection against coronaviruses by stimulating innate "trained" immunity (<u>Mettelman 2022, Tayar 2022, Ziogas 2022</u>).
- Determine the role and mechanisms of adjuvants in mediating interactions between
 innate and adaptive immune responses (<u>Carmen 2021</u>, <u>Lee 2022</u>) (e.g., driving breadth
 of response via CD4 T cell activation) (<u>Joyce 2022</u>).
- Clarify the role of memory T cells in reducing disease severity (Kent 2022, Moss 2022, Zheng 2021).
- **Continue** to study the role of innate immunity, including development of biomarkers for innate immunity.
- **Continue to assess** the role of different immune compartments and components of adaptive immunity to SARS-CoV-2 virus infection and vaccination (or to other

1119		coronaviruses), with a focus on the specific functions and kinetics of the three key
1120		components of the adaptive immune response (Moss 2022, Sette 2021, Sette 2022):
1121		 B cells, the source of neutralizing antibodies
1122		• CD4 T cells, which produce helper T cells, Th1 cells, and T follicular helper cells
1123		 CD8 T cells, which kill infected cells
1124	٠	Clarify the role in immune protection of binding but not neutralizing antibodies produced
1125		by coronavirus vaccines (<u>Poland 2021</u>).
1126	•	Determine the kinetics and magnitude of B cell responses to conserved antigens
1127		sufficient to provide broad protection from coronavirus infection, independently or in
1128		combination with T cell responses, for different vaccine platforms.
1129	•	Continue to assess the immune responses to different vaccine constructs and
1130		strategies for administering them.
1131	•	Determine whether increased levels of broadly reactive antibodies exacerbate
1132		autoimmune disease by increasing autoreactive antibodies (Labombarde 2022).
1133	•	Determine the role for activating multiple arms of the immunity system (including T cells,
1134		non-neutralizing antibodies, neutralizing antibodies to conserved epitopes, innate
1135		immune responses, and mucosal immunity) in eliciting broadly protective immunity
1136		(<u>Hauser 2022</u>).
1137	٠	Continue to employ innovative techniques to scale up T cell assays by simplifying
1138		sample collection and handling, and standardizing data collection and laboratory
1139		methods.
1140	٠	Consider studies with experimental manipulation of immune markers that enable more
1141		direct assessment of mechanistic CoPs, including vaccine challenge studies,
1142		monoclonal antibody challenge studies, and field trials of monoclonal antibodies for
1143		prevention.
1144	٠	Determine the processes by which immune dysregulation may contribute to severe
1145		COVID-19 disease following infection and the implications for development of next-
1146		generation coronavirus vaccines.
1147	٠	Continue to assess evolution of the human B cell repertoire and antibody responses
1148		after SARS-CoV-2 infection and immunization to determine the underlying parameters
1149		that contribute to broadening of immune responses (Pecetta 2022).
1150		

1151	TOPIC 3: VACCINOLOGY
1152	
1153	Issue: A set of preferred product characteristics (PPCs) for broadly protective
1154	coronavirus vaccines that has been widely vetted and agreed upon by key stakeholders is needed to inform vaccine R&D.
1155	is needed to inform vaccine R&D.
1156	Barriers
1157	 Since the next coronavirus threat is unknown in terms of timing and source of
1158	emergence, transmissibility, morbidity, mortality, and clinical presentation, typical risk-
1159	benefit calculations for broadly protective coronavirus vaccines are not possible.
1160	Development of PCCs is complicated by the potential need for different product
1161	characteristics for vaccines that target different viruses or have different indications (e.g.,
1162	transmission blocking vs. reducing morbidity and mortality).
1163	
1164	Gaps
1165	Important efforts have gone into the development of target product profiles (TPPs) for
1166	broadly protective coronavirus vaccines. A set of PPCs is also necessary to provide
1167	overall guidance to the research community and to industry regarding key characteristics
1168	for such vaccines. Issues include the following:
1169	• Guidance on the short-term versus long-term goals will help bring the needed
1170	vaccines to market most efficiently (e.g., SARS-CoV-2 variant-proof vaccines
1171	versus vaccines that protect against multiple coronavirus species).
1172	• Consensus on vaccine efficacy endpoints, such as blocking infection, interrupting
1173	transmission, and/or mitigating morbidity and mortality, will help prioritize efforts
1174	in bringing next-generation broadly protective vaccines to market.
1175	 Clarity is needed on how durability can be measured and against which
1176	outcomes, factors affecting durability, whether or not vaccines can be made more
1177 1178	durable and for how long, and defining realistic expectations for vaccine durability.
1179	 Consensus is needed on how broadly protective coronavirus vaccines will be
1180	used (i.e., proactively as part of routine vaccination programs vs. reactively as
1181	part of a pandemic or epidemic response strategy), as this will inform what is
1182	envisioned as the end products and will determine the markets for different
1183	approaches.
1184	 Up-front discussions are needed on how to simplify manufacturing, distribution,
1185	administration schedules (i.e., spacing, number of doses, mode), and stability
1186	(i.e., cold chain and storage requirements) without sacrificing vaccine safety or
1187	effectiveness, to facilitate equity in vaccine access (Rees 2022).
1188	• Emphasis should be placed on the importance of developing vaccines for global
1189	use that are not only suitable for high-income countries (HICs), but that can also
1190	be easily used in remote or low-resource settings.
1191	• Since developing a broadly protective vaccine will be a difficult task, especially
1192	considering the many issues outlined above, it is important to define a minimally
1193	acceptable TPP or set of PPCs that focus on broad protection as a starting point.

Issue: Broadly protective coronavirus vaccine candidates will need to provide protection against a range of existing and novel coronaviruses.

1197	Barriers
1198	 Many novel vaccine technologies and approaches for eliciting broad protection against
1199	coronaviruses are under investigation, but additional ongoing resources and investments
1200	will likely be needed to move new vaccine candidates through the development pipeline,
1201	particularly into clinical trials.
1202	 Selection of antigen(s) to optimize broad immunogenicity and cross-reactivity is
1203	challenging owing to the phylogenetic diversity of coronaviruses, antigenic breadth within
1204	coronaviruses, and limited understanding of conserved B and T cell epitopes across
1205	different coronavirus subgroups (<u>Baric 2022</u> , <u>Pack 2022</u>).
1206	 Multiple scientific, methodologic, and regulatory challenges exist for development of
1207	vaccines against pathogens that have not yet emerged.
1208	
1209	Gaps
1210	 Researchers are studying a variety of antigen presentation platforms for eliciting broad
1211	protection such as focusing on highly conserved viral regions, and using multiplexed
1212	chimera or nanoparticle vaccine technologies (<u>Chiu 2021</u> , <u>Martinez 2021</u> , <u>Saunders</u>
1213	2021, Walls 2021, Joyce 2022). At this time, it remains unclear as to which of these
1214	approaches are the most efficacious for broadly protective coronavirus vaccines.
1215	Further research into immunogenic antigens other than the S protein may identify novel
1216	vaccine targets that could be more broadly protective, such as the nucleocapsid,
1217	membrane or envelope proteins (<u>Soraci 2021</u>).
1218	It is unclear which vaccine platform(s) will induce the broadest and most durable
1219	protection. A number of different platforms are currently under investigation, such as
1220	live-attenuated virus vaccines, whole inactivated virus vaccines, viral-vectored vaccines,
1221	recombinant protein subunit vaccines, virus-like particle and nanoparticle vaccines, and
1222	nucleic acid (DNA or RNA) vaccines (<u>Begum 2021</u> , <u>Li 2020</u> , <u>WHO 2022a</u> , <u>Sung 2021</u>).
1223	 Further research is needed into antigenic imprinting and heterologous prime-boost vaccination strategies for generating bread protection against multiple different
1224 1225	vaccination strategies for generating broad protection against multiple different coronavirus strains (<u>Shepherd 2022, Tan 2021</u>). For example, different vaccination
1225	approaches (e.g., immunization schedules with multiple boosters, differing schedules,
1220	the use of different vaccine platforms in a prime-boost heterologous strategy, etc.) may
1228	produce a more effective response than modifications to antigens or adjuvants alone
1220	(Shepherd 2022).
1230	 Understanding of SARS-CoV-2 mutations and evolution, which are necessary for
1231	vaccine development, can be enhanced by an expansion of whole genomic sequencing
1232	and genomic databases, bioinformatics approaches, structure-based rational
1233	immunogen design, antigenic mapping, and computational analyses assisted by
1234	machine learning (<u>Soraci 2021, Pack 2022</u>).
1235	• A set of principles could be useful for funders and developers to down select vaccine
1236	candidates for further evaluation, based on the PPCs (or a specific TPP) and use cases

1237	for particular vaccines. Considerations should include not just vaccine efficacy, but also
1238	vaccine safety, manufacturing considerations, cold-chain issues, and ease of distribution
1239	and use, particularly in low-resource settings.
1240	 The impact of immune imprinting and preexisting partial immunity to SARS-CoV-2
1241	(infection-acquired and vaccine-mediated) on future vaccinations is unknown. (<i>Note</i> :
1242	This issue is further addressed in <u>Immunology and Immune Correlates of Protection</u>).
1243	
1244	Issue: Candidate vaccines need to elicit durable protection.
1245	Barriers
1246	• Durability of protection is not easily assessed in humans or in animal models, given the
1247	lack of immune correlates of protection against infection and particularly against severe
1248	disease (<u>Altmann 2022</u>), and the lack of early signatures for durable immunity. (See
1249	Animal and Human Infection Models.)
1250	Determining how best to assess vaccine durability in preclinical development remains a
1251	major scientific challenge.
1252	Sustained protection against infection and disease relies on both neutralizing and non-
1253	neutralizing (T cells, memory B cells, and Fc dependent humoral responses) systemic
1254	and mucosal protective responses against a broad range of coronaviruses (Krause
1255	2022, <u>Hsieh 2021</u>). The roles of these different responses in promoting durability is still
1256	under investigation (see <u>Immunology and Immune Correlates of Protection</u>). Additionally,
1257	immune markers for all of these responses are not readily available.
1258	Clinical trials may require 1 to 2 years or multiple seasons of follow-up to determine
1259	vaccine durability, which adds cost and complexity to research efforts (<u>Hodgson 2021</u>).
1260	 Repeated boosting with additional doses of existing vaccines or with slightly modified
1261	vaccines may limit the ability to study novel vaccines that elicit a more broadly protective
1262	response (<u>Pack 2022</u>).
1263	Vaccines are often licensed and used before a detailed understanding of durability is
1264	available, to support a rapid response with an immediate impact on disease incidence.
1265	0
1266	Gaps
1267	• The length and type of protection (e.g., from hospitalization, death, reinfection, and/or transmission) expected from a durable vacating are not well defined (Death 2022)
1268	transmission) expected from a durable vaccine are not well-defined (<u>Pack 2022</u>).
1269	 More information is needed regarding the durability afforded by different vaccine
1270	platforms.
1271	 Adjuvants and carefully designed immunization schedules that involve periodic boosting
1272	may or may not be needed to stimulate effective and long-term protection in a primed
1273	population (<u>Altmann 2022</u> , <u>Pack 2022</u>).
1274 1275	 Vaccines that induce mucosal immunity may elicit greater durability (<u>Bhattacharya</u> 2022) Additional information is precised to determine whether or not such vaccines
1275 1276	2022). Additional information is needed to determine whether or not such vaccines
1276 1277	actually can elicit greater immunity and/or durability and how those can be achieved.
1277	lequer Eurther entimization of coronavirus vessings is needed to improve sesses to
1278 1270	Issue: Further optimization of coronavirus vaccines is needed to improve access to future vaccines within and across different populations
1279	future vaccines within and across different populations.

1280	Barriers
1281	 Stimulating mucosal immunity may be important for promoting breadth and durability of
1282	protection and may also be necessary to prevent viral entry into mucosal cells, which will
1283	prevent infection and decrease the potential for asymptomatic transmission of
1285	coronaviruses (<u>Soraci 2021</u>). Current injectable coronavirus vaccines do not appear to
1284	significantly stimulate adequate mucosal immunity (<u>Azzi 2022</u> , <u>Collier 2022</u> , <u>Mudgal</u>
1285	
1280	 Some technologies under investigation, such as live-attenuated virus vaccines, may not
1287	• Some technologies under investigation, such as inve-attenuated virus vaccines, may not be appropriate for those who are pregnant, the elderly, or others with compromised
1289	immune systems (<u>Ansariniya 2021</u> , <u>Soraci 2021</u>).
1290	 Route of administration for future coronavirus vaccines could include existing or novel
1290	approaches to vaccine administration (intramuscular, transdermal, or nasal); experience
1291	with alternative routes of administration is limited.
1292	with alternative routes of administration is inflited.
1295	Gaps
1294	 Additional efforts are needed in the following areas to optimize future coronavirus
1295	vaccines:
1290	 Research into vaccines that stimulate mucosal immunity (including IgA
1298	antibodies, local mucosal IgG production, and cytotoxic T lymphocyte activation)
1299	and will likely be administered intranasally or orally. An important issue for
1300	mucosal vaccines is the need to establish a correlate of protection for mucosal
1300	immunity. (See Immunology and Immune Correlates of Protection.)
1301	 Improvements in vaccine thermal stability to address cold-chain issues that may
1302	limit access to certain vaccine platforms in remote or low-resource settings
1303	(Soraci 2021).
1304 1305	 Strategies to increase vaccine immunogenicity among people who are
1305	immunocompromised, frail, or elderly (<u>Sung 2021</u>).
1300	 Research to determine the role of different adjuvants for improving
1308	immunogenicity of next-generation coronavirus vaccines, including the design,
1309	development, and selection of the most potent adjuvants for different vaccine
1310	platforms (<u>Pack 2022</u>).
1311	
1312	Issue: Clinical trial design or other alternative approaches for demonstrating efficacy,
1313	non-inferiority, or superiority is complicated for broadly protective coronavirus vaccines.
1314	Barriers
1315	• The target virus (or viruses) must be circulating in humans to perform the gold standard
1316	randomized controlled clinical trial (RCT) for vaccine efficacy (Hodgson 2021). RCTs
1317	that assess the efficacy of a vaccine across the full breadth of its protection may not be
1318	possible for viruses or variants that are not yet circulating in the human population,
1319	although it may be possible to conduct RCTs to determine if a broadly protective vaccine
1320	is superior or non-inferior against whatever SARS-CoV-2 strains are circulating
1321	compared to one or more approved vaccines.

1322 1323 1324	•	Broad protection and cross-reactive immunity will need to be assessed in naïve, previously vaccinated, and previously infected individuals, which adds complexity to future research (<u>Pecetta 2022</u>).
1325	•	For SARS-CoV-2 variants, vaccine efficacy assessed during clinical trials is difficult to
1325	•	extrapolate because results will be dependent on currently circulating strains in a given
1327		area (<u>Pecetta 2022</u>).
1328	•	Differences in vaccine efficacy are likely to be observed in different geographic locations,
1329		not just because of differences in the circulating strains or prevalence of infection, but
1330		also because of health factors such as demographics, poverty, malnutrition, access to
1331		high-level medical care, and prevalence of comorbidities (<u>Hodgson 2021</u>).
1332		
1333	Gaps	
1334	٠	The absence of standardized or harmonized clinical trial endpoints, outcomes of interest,
1335		and assays for the evaluation of the human immune response makes interpretation and
1336		comparison of clinical trial data difficult (<u>Pecetta 2022</u>).
1337	•	The research and regulatory communities will need to establish how to best assess
1338		efficacy of broadly protective coronavirus vaccines in light of preexisting immunity, either
1339		from natural infection or vaccination (Rees 2022). Additionally, it is unclear what
1340		regulators will require for demonstrating breadth of protection.
1341	٠	Researchers may need to use one or more CoPs or well-characterized immune markers
1342		as surrogate endpoints for assessing vaccine efficacy in the absence of circulating virus
1343		(Krause 2022); however, more efforts are needed to define them.
1344	•	Owing to challenges with conducting clinical trials for broadly protective coronavirus
1345		vaccines, alternative approaches for assessing vaccine efficacy may be necessary and
1346		feasible. For example, some have proposed an alternative framework that involves
1347		comparing a new vaccine to a vaccine that is already approved for use. Examples of
1348		issues regarding using this framework include (Krause 2022):
1349		• The selection of comparator vaccines will rely on availability and a solid
1350		knowledge base for existing vaccines; therefore, researchers need to ensure that
1351		adequate information for the comparator vaccine is available.
1352		• The framework requires the ability to make direct or indirect comparisons of
1353		immune responses induced by the new and the comparator vaccine; therefore, a
1354		thorough understanding of the immune responses for each vaccine will be
1355		necessary.
1356		 If neutralizing immune responses are used for immunobridging, they will need to
1357		be predictive of other overall protective responses. Data validating this concept
1358		will be needed.
1359		 More research is needed regarding whether or not vaccines involving different
1360		platforms can be compared to each other.
1361	•	Other approaches for assessing efficacy exclusive of clinical trials include animal studies
1362	•	(with further immunobridging to human populations) or human infection studies.
1363		Additional efforts are needed to clarify how these alternative strategies can be used to
1364		assess vaccine efficacy, particularly for determining breadth of protection. (See <u>Animal</u>
1365		and Human Infections Models.)
1303		

1366 1367 1368	Issue: The regulatory pathway demonstrating efficacy or non-inferiority or superiority is particularly complicated for coronavirus vaccines designed to be broadly protective.
1369	Barriers
1370	It will be challenging to do more than lay out the regulatory strategies for approval of any
1371	broadly protective coronavirus vaccine until the characteristics of the viruses, the
1372	characteristics of the vaccine, and the potential indications for the vaccine's use are
1373	known.
1374	 Accelerated pathways or Emergency Use Listing (EUL) may also be options for
1375	authorization in the case of a marked increase in the sense of urgency. Use of these
1376	pathways, however, depends on the public health risk and available data (Beasley 2016,
1377	<u>WHO 2020</u>).
1378	Opportunities for emergency use authorization and expedited licensing procedures for
1379	coronavirus vaccines may be more limited in the future (<u>Branswell 2022</u>), unless new
1380	pathogenic viruses emerge.
1381	 Good clinical practice (GCP), good manufacturing practice (GMP), and good laboratory practice (CLD) form the foundation for regulatory compliance and are accessed by the
1382 1383	practice (GLP) form the foundation for regulatory compliance and are assessed by the country in which the activity takes place. Yet, not all national regulatory authorities
1384	(NRAs) are stringent with their GMPs and not all countries have the capacity within their
1384	NRAs to ensure GMP (Brüssow 2021).
1386	 Regulatory issues focused on specific products cannot be readily discussed in a
1387	multilateral manner among NRAs and instead are limited to bilateral discussions among
1388	NRAs with non-disclosure agreements in place (Farley 2022 2:35:00, Cavaleri 2022
1389	2:38:00).
1390	Broadly protective coronavirus vaccines will likely need to show protection not only
1391	against coronaviruses that are circulating in the human population but also potentially
1392	against viruses that are not circulating, which creates challenges for regulatory approval.
1393	
1394	Gaps
1395	 In some scenarios, regulatory approval may be granted by immunobridging to a
1396	comparator vaccine with known effectiveness. However, this option requires an
1397	authorized comparator vaccine that utilizes similar technology and has a similar breadth
1398	of antigenic composition. If these conditions are not met, candidate vaccines would likely
1399	need to perform additional clinical trials to demonstrate effectiveness. Measurement and
1400	understanding immune response for a comparator vaccine and a candidate vaccine are
1401	key to making direct comparisons for regulatory purposes (<u>Krause 2022</u>).
1402	 Regulatory approval may be granted based on alternative pathways if the requirements of traditional regulatory pathways cannot be met for broadly protective vaccines.
1403 1404	of traditional regulatory pathways cannot be met for broadly protective vaccines. However, it is not yet clear what pathways will be acceptable for regulatory approval.
1404 1405	nowever, it is not yet clear what pathways will be acceptable for regulatory approval.
1405	Strategic Goals and Aligned Milestones
1.00	

Strategic Goal 3.1: Define goals for broadly protective coronavirus vaccines by establishing a widely agreed upon and vetted set of PPCs and determine use cases for such vaccines.

1410 Milestones:

- 1411a.By 2023, building on existing TPPs, develop a broadly agreed upon and internationally1412vetted set of PPCs to identify key product characteristics, including optimal and critical1413minimal criteria. (These could follow a tiered approach, with an initial focus on variant-1414proof SARS-CoV-2 vaccines, then moving to other, more broadly protective tiers.)
- b. By 2024, develop initial use cases for broadly protective coronavirus vaccines, defining
 how, where, and under what circumstances such vaccines would be used (e.g., target
 populations, cold-chain and vaccine stability considerations, equitable access in
 resource-constrained settings). (*Note*: Following initial development, the use cases and
 PPCs may need to be modified over time through an iterative process.)

1420 Strategic Goal 3.2. Leverage new technologies or new approaches to create effective, 1421 durable vaccines that offer broad protection across different coronaviruses.

1422 Milestones:

- 1423a.By 2023, determine, in coordination with regulators, which coronaviruses should be1424included in a panel to be made available to researchers for assessing breadth of1425protection for coronavirus vaccine candidates—in alignment with the characteristics1426outlined in the set of PPCs (Milestone 3.1.a). (Also see Virology Applicable to Vaccine1427R&D.)
- b. By 2023, define a set of principles that can be used by funders and developers to down select vaccine candidates for further evaluation, based on the set of PPCs (or a specific TPP) and use cases for particular vaccines [Strategic Goal 3.1]), and taking into consideration the end goals for different vaccines.
- c. By 2024, advance a strategy or mechanism to promote collaboration among researchers
 and developers aimed at combining technologies to expand breadth of coronavirus
 vaccine coverage, such as assessing combinations of vaccines in animal models or
 early clinical trials, or assessing prime-boost combinations of different approved
 vaccines.
- 1437d.By 2023, conduct a workshop on SARS-CoV2 transmission-blocking vaccines to identify1438gaps in mucosal approaches for vaccine development.
- e. By 2024, develop and make available to researchers, an initial repository of
 coronaviruses (as available), pseudoviruses (if they can be made), and antigens, as
 identified in the panel in Milestone 3.2.a. The repository could be developed in a tiered
 fashion, with an initial focus on the highest risk viruses and then adding additional
 viruses over time.
- f. By 2024, conduct an analysis of existing adjuvants and create a repository of available
 adjuvants to ensure that they are accessible and available to vaccine R&D researchers.
 By 2025, determine, primarily through preclinical studies, if any adjuvants can
- substantially improve vaccine efficacy, breadth, or durability for SARS-CoV-2 variantsand other coronaviruses.

- h. By 2027, determine, through clinical studies, if intranasal, transdermal, and oral vaccines can enhance mucosal immunity and protect against both disease and transmission.
- 1451

Strategic Goal 3.3. Establish principles for conducting clinical trials that allow for comparisons between vaccines.

1454 Milestones:

- a. By 2024, develop a set of harmonized clinical (e.g., infection, severe disease, death) and
 immunologic endpoints that can be used in vaccine efficacy studies for broadly
 protective coronavirus vaccines.
- b. By 2025, develop a structure for rapidly identifying and agreeing on standardized clinical
 and/or immunologic endpoints that can be used to capture vaccine efficacy quickly after
 the emergence of a novel coronavirus.
- c. By 2025, develop a scientifically rigorous framework that addresses the requirements for
 clinical evaluation of broadly protective coronavirus vaccines and provides guidance on
 streamlining the clinical trial research process.
- d. By 2025, based on outcomes of the previous milestones, status of scientific knowledge,
 and circulating viruses at the time, develop and disseminate an international concept
 protocol that includes principles for clinical trials to allow for comparisons between
 vaccine candidates and comparator vaccines.

Strategic Goal 3.4. Build a foundation for regulatory evaluation of future coronavirus vaccines.

1470 Milestones:

a. By 2023, initiate annual meetings between the scientific community, regulatory 1471 authorities, and vaccine developers to share the latest immunology, virology, 1472 1473 vaccinology, and regulatory science advances and challenges to assist in building a 1474 foundation for regulatory evaluation of new coronavirus vaccines that would allow NRAs to have multilateral specific discussions on the regulatory evaluation of such vaccines. 1475 b. By 2025, develop a set of principles for regulatory evaluation of new coronavirus 1476 vaccines that: (1) outlines what information is needed to provide confidence in the 1477 efficacy or added value of variant-proof SARS-CoV-2 vaccines, particularly in 1478 comparison to existing vaccines; (2) follows a tiered or stepwise approach (such as 1479 starting with demonstrating efficacy against circulating SARS-CoV-2 variants and then 1480 1481 expands on that over time to assess or predict efficacy against other SARS-CoV-2 variants, then to other sarbecoviruses, merbecoviruses, or additional coronaviruses of 1482 concern as necessary); (3) takes into consideration the various mechanisms of 1483 protection that different vaccines may employ, which may help predict the potential 1484 breadth of protection for a given vaccine construct; (4) clarifies what is meant by a 1485 "broadly protective coronavirus vaccine"; (5) identifies approaches for predicting 1486 1487 protection (i.e., predicting potential clinical benefit) against coronaviruses that are not circulating in the human population; (6) defines the potential roles and limitation of tools 1488 1489 such as animal studies, human infection studies, and immunobridging for predicting

breadth of infection for new vaccines; and clarifies regulatory pathways for newcoronavirus vaccines.

1492 Strategic Goal 3.5. Facilitate the development of vaccine candidates with characteristics 1493 that meet global needs.

1494 Milestones:

- 1495a. By 2023, advance the involvement of LMICs in clinical development programs, so that1496clinical trials of broadly protective coronavirus vaccines include LMIC settings.
- b. By 2026, support the development of broadly protective coronavirus vaccines that can
 be made with less-complex manufacturing systems, to ensure the potential to
 manufacture such vaccines in more regions, which will lead potentially lead to more
 equitable distribution of such vaccines.
- c. By 2027, support the development of coronavirus vaccine technologies that are suitable
 for broad access and global distribution (such as cold-chain independent technologies)
 and that are scalable and can be produced affordably.

1504

1505 Additional Research Priorities

- Continue to expand the use of whole genomic sequencing and genomic databases,
 bioinformatics approaches, structural vaccinology, and computational analyses to
 improve vaccine design (Soraci 2021, Pack 2022).
- Conduct further research into immunogenic antigens other than the S protein to identify
 novel vaccine targets that could be more broadly protective, such as the N or S2
 antigens (Soraci 2021).
- Evaluate, on an ongoing basis, the potential for antigenic drift among conserved
 epitopes under immune pressure (e.g., when used as an antigenic target for broadly
 protective vaccines).
- Encourage innovation to improve coronavirus vaccines, building on the success of existing vaccines.
 - **Continue to assess** the durability afforded by different vaccine platforms.
- Promote coordination between immunologists, laboratory scientists, statisticians,
 clinicians, and computational biologists in efforts to conduct clinical trials for broadly
 protective coronavirus vaccines.
- **Strategize** as to how new technologies can be deployed on a global scale with greater equitable access.
- Continue to develop mechanisms to improve public communications regarding safety
 of coronavirus vaccines, such as tracking safety concerns from the public and
 developing consensus communication strategies to address them.
- Focus additional research on the effectiveness, side-effects, and durability of vaccines
 in special populations, such as children, pregnant and immunocompromised people, and
 people with advanced age.
- 1529
- 1530

1531 1532	TOPIC 4: ANIMAL AND HUMAN INFECTION MODELS FOR CORONAVIRUS VACCINE RESEARCH
1533 1534 1535	ANIMAL MODELS
1536 1537	Issue: Multiple animal models may be needed to assess vaccines that protect against multiple coronaviruses.
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551	 Barriers SARS-CoV-1 and SARS-CoV-2 bind to the hACE2 receptor; however, not all human coronaviruses bind to this site. MERS-CoV binds to DPP4, and the receptor site remains unknown for some of the viruses that cause more mild disease in humans (Gralinski 2015). Therefore, several different animal models will likely be needed to study vaccines that protect against multiple coronaviruses of different genera or subgenera. Animal models for studying MERS-CoV are limited by differences in critical amino acids in the S-binding domain of the DPP4 receptor (Baseler 2016). Appropriate animal models for SARS-CoV-1 and SARS-CoV-2 include Syrian hamsters; mice (e.g., transgenic mice, knock-in mice, mice transduced with adenovirus or adeno-associated virus expressing hACE2 or mice infected with mouse-adapted virus strains); and NHPs (Muñoz-Fontela 2020, Qin 2022, Singh 2020, Casel 2021, Shou 2021, McCray 2007, Sun 2020, Wong 2022). While these various animal models can provide useful information, they all have important limitations (Qin 2022); key examples include
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564	 the following: Small animal models offer several advantages because they are readily available, can be handled with less effort and cost, and may be used in large numbers for stronger statistical power during data analysis. The primary limitation is the intrinsic biological differences between humans and rodents or small mammals. For NHPs, several issues limit their use. First, coronavirus illness in NHPs is generally mild and does not recapitulate the pathology seen in humans. Second, a high cost is associated with using NHPs (Gralinski 2015), which limits the number of animals that may be included in a study and thus adversely affects the statistical power. Third, most NHPs are outbred animals and have a wide variability in genetic backgrounds, which sometimes makes it difficult to interpret the outcome of a study because of variability in results among individual animals
1565 1566 1567 1568 1569 1570 1571 1572 1573	 (Trichell 2021). Fourth, ethical considerations for research constrain their use (Carvalho 2018). Finally, the COVID-19 pandemic has significantly increased the demand for NHPs, which has created issues with supplies of these animals (Contreras 2021). Currently, virus stocks for different coronaviruses are limited. For example, 2d betacoronaviruses are not available for animal model research and stocks for 2c betacoronaviruses viruses other than MERS-CoV are very limited. Different animal models will be needed for studies with different aims (Wang 2021). For instance, when trying to determine whether SARS-CoV-2 still exists in the upper

1574	respiratory tract after vaccination or to study transmission, the Syrian hamster is a
1575	potential choice, although these animals develop limited clinical disease. For SARS-
1576	CoV-2-induced pulmonary disease, as well as a preliminary exploration of mucosal
1577	COVID-19 vaccines, hACE2 transgenic mice or use of mouse-adapted viruses are
1578	potential options.
1579	 The US Food and Drug Administration's (FDA's) Animal Rule could potentially be an
1580	appropriate regulatory pathway for facilitating approval of a broadly protective
1581	coronavirus vaccine through the use of animal studies; however, achieving approval
1582	through the Animal Rule requires demonstrating efficacy in either multiple animal
1583	species or in a single well-characterized animal model (Brockhurst 2021).
1584	• There is lack of standardization for experimentation and reporting for research involving
1585	NHPs (<u>Witt 2021</u>).
1586	(<u>((((((((((((((((((((((((((((((((((((</u>
1587	Gaps
1588	Research needs include the following:
1589	 Standardized, validated, and well-characterized animal models (including NHPs)
1590	to evaluate and compare broadly protective coronavirus vaccines. Examples of
1591	parameters to consider include the challenge virus strain, dose, route, volume,
1592	and timing of challenge. Also, the appropriate clinical or virologic endpoints for
1593	each animal species need to be determined.
1594	 Animal models for SARS-CoV-2 VOCs are needed to assess whether the
1595	available vaccines offer protection against clinical disease (Fan 2022).
1596	 Further elucidation of receptor sites for non-ACE2-binding coronaviruses (<u>Dai</u>
1597	
1598	 Additional information is needed (such as data from fatal human MERS-CoV
1598	infections) to determine which animal model best represents MERS-CoV in
1600	humans (<u>Singh 2020</u>).
1601	 Animal models are needed for studying bat-derived coronaviruses, such as group
1601	2d betacoronaviruses.
1602	zu belacoronaviruses.
1603	Issue: Animal models are needed that: (1) recapitulate the range of clinical features of
1604	coronavirus infection found in humans, including severe and lethal disease, and (2) can
1605	address the impact of host factors on vaccine efficacy.
1000	address the impact of nost factors on vaccine encacy.
1607	Barriers
1608	 Most animal models exhibit limited lethality in response to SARS-CoV-2 infection (Fan
1609	<u>2022, Kim 2022)</u> .
1610	• With the exception of mice, comorbidities related to coronavirus disease (e.g., diabetes,
1611	obesity, cardiovascular disease) are difficult to mimic in animal models (Kim 2022).
1612	• Animal models are needed that are suitable for both antigenically naïve populations (i.e.,
1613	infants and very young children) and antigenically experienced populations (i.e., adults
1614	and children who have been exposed to SARS-CoV-2 or vaccinated and those with
1615	exposures to coronaviruses causing mild illness).
1616	
	11 D a g e

1617 **Gaps**

161/	Gaps
1618	 Research needs related to animal models include:
1619	 Identification of animal models that recapitulate the severe and lethal forms of
1620	human SARS Co-V-2 infection (<u>Muñoz-Fontela 2022</u>).
1621	 Identification of animal models that can assess disease for viruses that have not
1622	yet jumped the zoonotic barrier.
1623	 Further refinement of animal models to mimic different human conditions such as
1624	route of infection, underlying morbidities, sex, advanced age, pregnancy, and
1625	immunocompromised status that impact immune response to broadly protective
1626	coronavirus vaccines (<u>Braxton 2021</u>).
1627	 Experimentation in different animal models and using different emerging SARS-
1628	CoV-2 variants to ensure validity of research conclusions (<u>Muñoz-Fontela 2022</u>).
1629	 Animal models (particularly mouse models) for assessing human T cell
1630	responses (e.g., T helper cells [Th1 and Th2]) (<u>Fan 2022</u> , <u>Jarnagin 2021</u>).
1631	 Animal models for assessing "long COVID" (Frere 2022), although numerous
1632	challenges exist for this, since "long COVID" has not been clearly defined and
1633	multiple pathologic pathways may result in chronic illness following acute SARS-
1634	CoV-2 infection.
1635	
1636	Issue: Additional challenges exist to accurately assess broadly protective coronavirus
1637	vaccines in animal models.
1638	Barriers
1639	 Studying broadly protective coronavirus vaccines will require availability of representative virus stacks for research in animal models, which may be challenging to
1640	representative virus stocks for research in animal models, which may be challenging to
1641 1642	obtain, particularly across different genera and subgenera of coronaviruses (<u>Cohen</u> 2021).
1643	
1644 1645	least an ABSL-3 laboratory, making work cumbersome. Furthermore, ABSL-3 laboratory space for NHP studies is limited (Hild 2021).
	· · · · · · · · · · · · · · · · · · ·
1646	• A new SARS-CoV-2 variant might change the host range or affect the pathophysiology
1647	and response in certain animal models (such as Syrian hamsters). This in turn may
	render study in that animal difficult or leaking validity (Nuñaz Fantala 2022)
1648	render study in that animal difficult or lacking validity (<u>Muñoz-Fontela 2022</u>).
1649	Durable protection will be an important consideration for broadly protective coronavirus
1649 1650	• Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models.
1649 1650 1651	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or
1649 1650 1651 1652	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or vaccinated, the majority of humans are likely to have preexisting immunity to SARS-
1649 1650 1651 1652 1653	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or vaccinated, the majority of humans are likely to have preexisting immunity to SARS-CoV-2, which will be difficult to mimic in animal models.
1649 1650 1651 1652 1653 1654	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or vaccinated, the majority of humans are likely to have preexisting immunity to SARS-CoV-2, which will be difficult to mimic in animal models. Gain-of-function research may be necessary to optimize animal models for studying
1649 1650 1651 1652 1653 1654 1655	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or vaccinated, the majority of humans are likely to have preexisting immunity to SARS-CoV-2, which will be difficult to mimic in animal models. Gain-of-function research may be necessary to optimize animal models for studying coronaviruses and coronavirus vaccine responses in animals. For example, viruses may
1649 1650 1651 1652 1653 1654 1655 1656	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or vaccinated, the majority of humans are likely to have preexisting immunity to SARS-CoV-2, which will be difficult to mimic in animal models. Gain-of-function research may be necessary to optimize animal models for studying coronaviruses and coronavirus vaccine responses in animals. For example, viruses may need to be made more pathogenic to cause illness in certain animals so that vaccine
1649 1650 1651 1652 1653 1654 1655	 Durable protection will be an important consideration for broadly protective coronavirus vaccines; however, duration of protection is difficult to study in animal models. As the COVID-19 pandemic continues and more of the human population is infected or vaccinated, the majority of humans are likely to have preexisting immunity to SARS-CoV-2, which will be difficult to mimic in animal models. Gain-of-function research may be necessary to optimize animal models for studying coronaviruses and coronavirus vaccine responses in animals. For example, viruses may

1659		 One challenge is that definitions regarding what constitutes gain-of-function
1660		research are not clear and are open to interpretation, which creates lack of clarity
1661		in addressing this issue.
1662		 Gain-of-function research is controversial and some policy makers believe that
1663		such research should be restricted. If gain-of-function research is restricted too
1664		rigorously, however, this could limit the types of vaccine R&D that can be
1665		performed in animal studies, which in turn, could hinder vaccine development.
1666		While ethical and scientific oversight of gain-of-function research is critical, efforts
1667		to overly restrict such research may be ultimately detrimental to R&D of broadly
1668		protective coronavirus vaccines.
1669	•	As SARS-CoV-2 strains evolve and become more adapted to humans, they may
1670		become less able to infect animals or cause disease in animal models (McMahan 2022).
1671		
1672	Gaps	
1673	•	Head-to-head studies in animal models with multiple vaccine candidates could enhance
1674		understanding of vaccine-induced immunity.
1675	•	Ongoing efforts are needed to ensure that validated, reliable reagents, updated virus
1676		strains and stocks, and harmonized assays are available to the research community to
1677		improve understanding of the innate and adaptive immune responses against
1678		coronavirus infection in various animal models.
1679	•	Efforts are needed to adapt animal models to reflect preexisting immunity to SARS-CoV-
1680		2 in the human population (<u>DeGrace 2022</u> , <u>Fan 2022</u>).
1681	•	SARS-CoV-2 animal models are needed in which the virus replicates for extended
1682		periods of time to allow assessment for emergence of resistant variants against vaccines
1683		(Muñoz-Fontela 2022).
1684	•	Efforts are needed to ensure adequate, sustained supplies of animals and resources
1685		(including laboratory space) for research involving NHPs, particularly specific pathogen-
1686		free NHPs (Contreras 2021). Additionally, efforts are needed to conserve animal
1687		resources and develop strategies for good stewardship of such resources (Fan 2022).
1688		
1689	CONT	ROLLED HUMAN INFECTION MODEL (CHIM)
1690		
1691	Issue:	The role of a CHIM in coronavirus vaccine research needs to be further clarified
1692	and d	efined.
1693	Barrie	
1694	- Durrie	The potential for severe disease or long-term sequelae (e.g., "long COVID" or PASC)
1695	•	following infection, although uncommon, may limit the utility of a CHIM studies to
1696		investigate SARS-CoV-1, SARS-CoV-2, and MERS-CoV because of ethical
1697		considerations (Williams 2022).
1698	•	The United Kingdom is the first, and remains the only, country to perform SARS-CoV-2
1699	-	CHIM studies (<u>Killingley 2022</u>); therefore, recent experience with a CHIM for coronavirus
1700		research is limited. Efforts are underway to expand use of the CHIM to other countries.

1701	Similar to influenza and other pathogens, CHIM studies are limited to healthy adults
1702	without comorbidities and thus do not reflect potential outcomes in special populations
1703	(Sherman 2019)
1704	• CHIM studies are currently limited to small sample sizes (Killingley 2022). Capacity to
1705	run larger studies is needed so that efficacy trials can deliver results in a timely fashion.
1706	This capacity gap includes quarantine facilities and expertise.
1707	 Obtaining challenge viruses can be a barrier to conducting CHIM research. GMP Delta
1708	and Omicron SARS-CoV-2 challenge viruses funded by the Wellcome Trust and the Bill
1709	& Melinda Gates Foundation are being made available to researchers with the capacity
1710	for CHIM studies and their rigorous safety requirements. An independent international
1710	Access Management Group as specified by the Wellcome Trust will provide oversight of
1712	these programs.
	these programs.
1713	Gane
1714	Gaps
1715	Additional research needs include the following:
1716	 Clarification of the role of CHIM studies for evaluating broadly protective
1717	coronavirus vaccines (<u>Sekhar 2020</u>).
1718	 Standardization of parameters for CHIM research in assessing broadly protective
1719	coronavirus vaccines.
1720	 Development of best practices for using a CHIM in coronavirus vaccine research,
1721	including risk mitigation strategies that reflect a changing landscape of disease
1722	and therapies.
1723	 Determining the potential impact of prior infection or vaccination against SARS-
1724	CoV-2 on CHIM studies of more broadly protective coronavirus vaccines and
1725	strategies to address this issue. It may be difficult or very resource intensive to
1726	find volunteers who are naïve to SARS-CoV-2 infection or vaccination.
1727	 Regulatory harmonization for conducting CHIM studies.
1728	 Coronaviruses that cause mild disease in humans (human betacoronaviruses HKU1 and
1729	OC43 and human alphacoronaviruses 229E and NL63) or possibly attenuated wild type
1730	SARS-CoV-2 viruses may be suitable for use in a CHIM. Further clarification is needed
1731	regarding how such studies could contribute to coronavirus vaccine R&D (Morens
1732	<u>2022b</u>).
1733	Delta and Omicron programs are funded and underway to establish models in pre-
1734	immune volunteers, so data on the effect of prior immunity on infection by variants will
1735	be generated.
1736	Studies in naïve participants are effectively no longer possible as almost all adults have
1737	immunity from vaccination and/or infection.
1738	There is a need to improve international collaboration so that products can be tested
1739 1740	against different strains/viruses that may be available in different institutions around the world. Alignment of protocols and processes will allow meaningful comparison of results
1740 1741	world. Alignment of protocols and processes will allow meaningful comparison of results with different products and virus strains.
1,47	
17/0	Strategic Goals and Aligned Milestones

1742 Strategic Goals and Aligned Milestones

1743Strategic Goal 4.1: Ensure that appropriate animal models are developed and available1744for conducting R&D for broadly protective coronavirus vaccines.

1745

1746 Milestones:

- 1747 a. By 2023, convene an international workshop on animal models for studying broadly 1748 protective coronavirus vaccines. Examples of topics for the workshop include: (1) review existing animal models for coronaviruses (to include but not limited to SARS-CoV-1, 1749 1750 SARS-CoV-2, and MERS-CoV); (2) determine which animal models are best suited for 1751 R&D of broadly protective coronavirus vaccines; (3) identify strategies to optimize the use of mouse models (and other small mammals including hamsters and ferrets) for 1752 coronavirus vaccine research; (4) determine how best to optimize the use of NHPs for 1753 R&D efforts, particularly given their limited supply; (5) determine how to mimic 1754 preexisting immunity in animal models; (6) determine how animal models can be used to 1755 assess the impact of host genomics or the microbiome on vaccine performance (e.g., 1756 the use of "dirty mice"); (7) determine the role of animal models in measuring mucosal 1757 1758 immunity, breadth, and durability of vaccines; (8) determine the role of animal models in 1759 defining immune CoPs: (9) determine the role of animal models in studying long COVID: (10) address issues around gain-of-function research applicable to animal models; (11) 1760 1761 identify gaps in the current animal model landscape; and (12) develop strategies and plans for meeting animal-model research needs going forward. 1762 b. By 2023, develop a strategy to ensure that validated, reliable reagents, virus strains and 1763 stocks, and harmonized serological assays are available for studying a broader range of 1764 coronaviruses (with initial focus on additional sarbecoviruses [group 2b 1765 1766 betacoronaviruses] and a wider variety of MERS-related merbecoviruses [group 2c 1767 betacoronaviruses]). c. By 2025, ensure that standardized, validated, and well-characterized animal models are 1768 available to evaluate and compare broadly protective coronavirus vaccines. Examples of 1769 parameters to consider include the challenge virus strain, dose, route, volume, and 1770 timing of challenge, and animal responses to human-adapted variants. Immune history 1771 1772 and prior exposure to ancestral coronaviruses should also be considered. The appropriate surrogate markers of clinical disease severity (such as weight loss or 1773
- 1774 markers for lung pathology) are needed for each animal species.
- 1775d. By 2025, conduct side-by-side comparisons of various animal models to determine1776transmission dynamics in different animals and which animals are most appropriate for1777studying different SARS-CoV-2 variants or other coronaviruses.
- e. By 2026, conduct head-to-head comparison studies of multiple vaccine candidates in
 different animal models (including small mammals and NHPs).
- 1780f.By 2026, conduct parallel studies of vaccine candidates in humans and NHPs that are1781aligned as closely as possible (e.g., by using similar dosing and schedules) to obtain1782information for immunobridging from animals to humans.
- 1783g. By 2027, ensure that standardized, validated, and well-characterized animal models are1784available that recapitulate the range of severe acute disease associated with human1785COVID-19 (such as severe lung disease, coagulopathies, and neurological1786manifestations) (<u>Muñoz-Fontela 2022</u>).

- h. By 2027, determine the role of animal models in studying long COVID/PASC. 1787 1788 1789 Strategic Goal 4.2: Establish the role of a CHIM in R&D for broadly protective coronavirus 1790 vaccines and optimize the model for vaccine research. 1791 1792 Milestones: 1793 a. By 2023, conduct a workshop to clarify the role of CHIM studies for evaluating broadly 1794 protective coronavirus vaccines (Sekhar 2020). Examples of key issues include: (1) 1795 developing consensus on how CHIM models can be used for coronavirus vaccine research; (2) identifying strategies for studying the role of prior immunity from infection or 1796 vaccination on vaccine performance; (3) determining how CHIM studies can be used to 1797 assess mucosal immunity and mucosal inflammatory markers; (4) determining the role of 1798 the CHIM in establishing CoPs; (5) identifying strategies for assessing vaccine durability; 1799 and (6) clarifying how CHIM studies involving coronaviruses that cause mild disease in 1800 humans could inform additional coronavirus vaccine R&D (Morens 2022b). 1801 1802 b. By 2024, determine the potential impact of prior infection or vaccination for SARS-CoV-2 on CHIM studies involving SARS-CoV-2 vaccines. 1803 c. By 2024, develop a set of best practices for using a CHIM in coronavirus vaccine 1804 research to include risk mitigation strategies that reflect a changing landscape of disease 1805 1806 and therapies. 1807 d. By 2025, work with global regulators to establish parameters for use of CHIM studies and immunobridging for licensure of candidate vaccines. 1808 e. By 2025 (assuming candidate vaccines are available) standardize parameters for a 1809 1810 CHIM model in assessing broadly protective coronavirus vaccines, such as defining 1811 appropriate strain selection, standardizing panels of immunologic assays and assay 1812 harmonization, identifying mucosal inflammatory markers, and harmonizing protocols to the degree possible. 1813 f. By 2026, establish international capacity and collaborative networks for conducting 1814 CHIM studies of broadly protective coronavirus vaccines. 1815 g. By 2028, (assuming candidate vaccines are available) determine the potential impact of 1816 prior infection or vaccination for SARS-CoV-2 on CHIM studies involving broadly 1817 protective coronavirus vaccines. 1818 1819 **Additional Research Priorities** 1820
 - Further elucidate receptor sites for non-ACE2 binding coronaviruses to inform animal model development for coronavirus vaccine research (<u>Dai 2020</u>).
 Continue to identify the most suitable animal models for studying MERS-CoV
 - Continue to identify the most suitable animal models for studying MERS-CoV infections (Singh 2020).
 - Conduct research to determine suitable animal models for bat-derived coronaviruses,
 such as group 2d betacoronaviruses.
 - Further refine animal models over time to mimic different human conditions such as
 route of infection, underlying morbidities, sex, advanced age, and immunocompromised

	status that impact immune response to broadly protective coronavirus vaccines (Braxton
	<u>2021</u>).
•	Determine on an ongoing basis the best strategies for using animal model studies in
	assessing the emergence of SARS-CoV-2 viral variants that can evade immune
	protection from vaccination or infection (Muñoz-Fontela 2022).
•	Continue to explore how data from animal models or human infection models can be
	used to support vaccine licensure and what the parameters are for defining the role of
	such data.
•	Ensure, on an ongoing basis, adequate and sustained supplies of animals and
	resources (including laboratory space) for research involving NHPs, particularly specific
	pathogen-free NHPs (<u>Contreras 2021</u>).
•	Employ single-cell transcriptomics in the CHIM to dissect cell-specific responses.
•	Assess on an ongoing basis the risks and benefits of gain-of-function research related
	in animal and human infection models to ensure that such research meets acceptable
	bioethical and safety standards.
	•

1845

TOPIC 5: POLICY AND FINANCING 1847 1848 1849 Issue: Multiple market forces work against bringing broadly protective coronavirus 1850 vaccines to the global community in high, middle, and low-income countries 1851 Barriers The current coronavirus vaccine R&D field is filled with an array of existing patents, 1852 • 1853 contracts and agreements, social and economic inequities, geographic maldistribution of manufacturing capacity, and unstable funding. 1854 R&D of new vaccines is exceedingly expensive. Recently, governments and foundations 1855 • 1856 provided billions of dollars to bring SARS-CoV-2 vaccines to market; however, the political will and public interest for continued funding are challenging to maintain in a 1857 landscape where there is always the next variant, virus, or pandemic threat (Lancet 1858 1859 Commission 2021), and public support for such large-scale investments is diminishing (Branswell 2022). Also, once a crisis has passed, government funding will be more 1860 difficult to obtain, since governments face pressures to address urgent crises rather than 1861 1862 long-term strategies. Vaccines can be a winner-takes-all (or most) market with a significant advantage to 1863 being first to market. This is especially true in pandemic or epidemic situations, where 1864 the first vaccine to demonstrate efficacy is fully purchased by governments before other 1865 candidate vaccines have had a chance to complete their clinical development. One way 1866 1867 to address this is for the governments to divide the market share once other vaccines 1868 enter the market. The rapidly waning immunity of early SARS-CoV-2 vaccines and decreased vaccine efficacy against variants, however, may reduce some of the first-to-1869 1870 market advantage for current coronavirus vaccines. Unless problems are noted with a vaccine, there is little incentive to invest in better or 1871 next-generation vaccines (Agarwal 2022). With SARS-CoV-2 vaccines, the financial 1872 1873 risks and benefits of the current situation tend to favor minor changes to existing technologies rather than investment in novel technologies. For example, one current 1874 1875 commercial model is to create boosters specific to new variants as they arise, using 1876 existing platforms. This model may play into the status guo of creating strain-specific vaccines, rather than expanding vaccine R&D to generate broadly protective vaccines. 1877 Unless opportunity costs are absorbed by governments or other funding bodies, 1878 companies face a high opportunity cost when it comes to focusing on vaccines rather 1879 than other pharmaceuticals with a likely higher per-unit profit, on-going use, and stable 1880 1881 demand. 1882 Coronavirus vaccines face a large global market that is dominated by a few large 1883 purchasers. A large market size can be seen as both an opportunity and a hindrance for 1884 private investment into new vaccines. For example, a large market size in HICs can lead to higher pricing; however, larger market size can also negatively impact vaccine per-1885 1886 unit pricing, as governments or large global purchasers, such as Gavi, the Vaccine Alliance, negotiate for extensive contracts, which can be market shaping and lead to less 1887 flexibility in pricing (Haugen 2020, Agarwal 2022, Monrad 2021). 1888

- Ensuring global equity in vaccine access will need to address the current geographic concentration of vaccine R&D, manufacturing, and purchasing power of HICs, which can lead to gross inequities in the vaccine market. Organizations such as Gavi played a critical role in securing COVID vaccines for the world's poorest countries through the newly established COVAX Facility; it remains unclear what the role of Gavi and the COVAX Facility would be for procurement of future broadly protective coronavirus vaccines for LMICs.
- Maximizing the potential benefit of vaccination relies on global demand and vaccine uptake. There is a collective memory among vaccine developers of times when the vaccine markets lacked demand and therefore recouping development costs was seen as less reliable.

1900 1901 **Gaps**

- There are a multitude of ongoing efforts in basic and applied research, laboratory systems, research infrastructure, and global capacity-building to bring broadly protective coronavirus vaccines to a global market. However, efforts are not coordinated, broadly shared, or designed for efficiency and avoidance of duplication.
- Unlike at the beginning of the COVID-19 pandemic, when there was considerable
 urgency to invest in novel products, at this stage, a focused set of incentives may be
 needed to encourage novel vaccine technologies that may be superior to first-generation
 vaccines. However, until novel technologies are shown to be superior to first-generation
 vaccines, vaccines that have a proven track-record cannot be abandoned or ignored.
- Alongside the push incentives of government funding and non-monetary drivers, pull
 incentives, such as advanced market commitments that signal a predictable and
 sufficient market, are needed in high, middle, and low income countries to drive products
 toward approval, manufacturing, and availability. Strategies to support these incentives
 are needed.
- 1917 Issue: Intellectual property rights are a critical aspect of vaccine innovation, yet come at
 1918 a cost.

1919 Barriers

1916

1930

- New vaccine candidates will likely be based on a series of patented technologies, many of which already exist. Many different patents apply to vaccines from development to components to manufacturing to delivery (WIPO 2022).
- Although governments heavily fund academic and corporate R&D, the resulting
 intellectual property rights of these public funds end up in private sector, non governmental domains. The public sector is reluctant to increase public investment when
 it is unclear if there will be a commensurate public access to intellectual property
 established through the use of public monies (Rees 2022a).
- Only a partial picture is available as to the patents that exist surrounding next-generation coronavirus vaccines.
 - Four hundred seventeen patents related to COVID-19 vaccine development were filed from 2020 through September 30, 2021 (<u>WIPO 2022</u>). However, patent

1932publications can take 18 months to be published (<u>Alshrari 2022</u>, <u>Kitsara 2022</u>,1933WIPO 2022). The time to patent publication varies by country, from 7.7 months in1934China to 18.8 in the US and 18.9 in Japan (<u>WIPO 2022</u>). Because of the lag in1935entering the public domain, these 417 are just an early indication of the patent1936activity surrounding COVID-19 vaccines, not to mention technology related to1937vaccine research, development, testing, and production.

Negotiating licensing agreements and understanding the intellectual property landscape
 can be quite costly and require expertise, which may cause vaccine developers to
 hesitate in pursuing a new approach.

1942 **Gaps**

1941

- The future application of World Trade Organization (WTO) agreements, including but not
 limited to Trade Related Aspects of Intellectual Property Rights (TRIPS) flexibilities for
 public health emergencies, is uncertain and needs clarification.
- Awards of public monies for research and development do not always include clauses to improve intellectual property access for smaller developers, those in LMICs, and more broadly during in times of public health need. Similarly, with few exceptions (e.g., CEPI), public investment does not compel developers to commit to ensuring access in LMICs in the event that their product is successfully developed.
- The long-term outcomes of voluntary licensing and sharing being undertaken during the
 COVID-19 pandemic are unknown. It is unclear what will happen to intellectual property
 rights not currently being enforced when the pandemic is truly "over."
- Efforts are needed to clarify the role of patent pools, such as WHO's COVID-19
 Technology Access Pool (C-TAP), and vaccines capitalizing on established technologies
 that are not patent protected (<u>Hotez 2021</u>, <u>WHO 2020</u>).
- 1957

1958 Issue: Timely access to broadly protective coronavirus vaccines will require a greater 1959 degree of manufacturing capacity.

- 1960 Barriers
- 1961 If a new coronavirus emerges to cause another pandemic, rapid access globally to either • a strain-specific vaccine or to broadly protective coronavirus vaccines will be critical for 1962 mitigating pandemic impact. A global concentration of manufacturing and regulatory 1963 capacity exists in HICs and in some countries with very large populations, guaranteeing 1964 1965 them a large national market. Furthermore, the current vaccine industry can, in a time of 1966 a public health emergency and vaccine shortages, become protectionist either because of government constraints on vaccine exports or because of tiered pricing structures that 1967 favor HICs. In the case of COVID-19, both considerations likely contributed to the 1968 inequity in vaccine access between those countries with and without these capacities. 1969 Successful technology transfer is complex and requires trusted partners with the 1970
- expertise and capacity, long-term human and financial investment, and political will.
- Countries have highly variable levels of regulatory capacity to monitor GCP, GMP, and
 GLP, and very few regulatory authorities in LMICs have received a WHO maturity level 3

1974 1975	for vaccines, which is required if locally manufactured vaccines are to be considered for the global market.
1975	
1976 1977	 Intellectual property waivers alone may not be as successful as good and complete technology transfers based on manufacturing capacity and expertise (<u>Prasad 2022</u>).
1978	
1979	the expertise and experience to produce high-quality, safe vaccines that can pass
1980 1981	 regulatory approval (<u>Kahla 2022</u>, <u>Nohynek 2022</u>, <u>Rizvi 2022</u>). Manufacturing capacity is not merely an issue of building the facilities and expertise, but
1981	 Manufacturing capacity is not merely an issue of building the facilities and expertise, but also the ability to maintain this capacity in a way that is financially sustainable over time,
1982	particularly during non-pandemic times.
1983 1984	particularly during non-participation unles.
1984 1985	Gaps
1985	 It is unknown how voluntary technology transfers, pledges to not enforce patents, WTO
1987	actions, TRIPS flexibilities, and licensing agreements will play out in the next phases of
1988	the COVID-19 pandemic or as the pandemic wanes.
1989	 Funding at-risk manufacturing, or scaling up dose production ahead of clinical trial
1990	completion or vaccine regulatory approval, may be a way to speed up the availability of
1991	new vaccines in the event of a public health emergency (Sampat 2021). However, there
1992	is little appetite for these mechanisms at the current time and how this could be used to
1993	promote broadly protective coronavirus vaccines is unknown; thus, further exploration of
1994	mechanisms to address these issues is warranted.
1995	 WHO and partners have established the mRNA Technology Transfer Hub, the global
1996	biomanufacturing training hub in the Republic of Korea, and the Global Benchmarking
1997	Tool for regulatory authorities to address global manufacturing capacity. However,
1998	efforts are still needed to operationalize these programs, expand engagement of
1999	companies with the most advanced capacities, and expand efforts to other vaccine
2000	platforms beyond mRNA technologies (<u>WHO 2022b</u> , <u>WHO 2022</u>).
2001	
2002	Strategic Goals and Aligned Milestones
2003	Strategic Goal 5.1. Establish and convey the value of sustained financial support and
2004	demand for development of broadly protective coronavirus vaccines.
2005	Milestones:
2006	a. By 2024, develop and disseminate a detailed economic case for broadly protective
2007	coronavirus vaccines through a full value of vaccine assessment (FVVA) or a series of
2008	detailed cost-benefit analyses for vaccines from SARS-CoV-2 variant-proof vaccines to
2009	more broadly protective coronavirus vaccines. These assessments will need to include a
2010	multitude of perspectives (e.g., health payers, economic, and societal) at a number of
2011	levels (e.g., global, national, and regional) and take into account varying contexts (e.g.,
2012	demographics, healthcare capacity, competing health priorities) (Giersing 2021).

b. By 2024, develop targeted communications and advocacy strategies and necessary
communication tools that build on the FVVA or cost effectiveness analyses and provide
information on the economic costs, risks of future coronavirus threats, and the need for
continuing investment in coronavirus vaccine R&D.

- c. By 2024, convene a meeting of vaccine investors, purchasers (including governments
- 2018 and large global institutions), producers, and governmental representatives aimed at
- 2019 exploring strategies for providing a reliable marketplace and financial model for broadly
- 2020 protective coronavirus vaccines. Meeting participants will assess the current push (e.g.,
- 2021grants, subsidies) and pull incentives (e.g., advance market commitments) and2022appropriate thresholds to move from push to pull, as well as establish a pricing model in2023line with the PPCs that can be anticipated for vaccines of various characteristics (e.g.,
- 2024 number of doses required, stability, duration of protection, protection offered).
- 2025d. By 2025, explore strategies for ensuring a 10-year international funding stream, involving2026public and private partners, aimed at supporting R&D for broadly protective coronavirus2027vaccines.

2028 Strategic Goal 5.2. Reassess the current landscape of intellectual property rights to 2029 improve information sharing involving new technologies.

2030 Milestones:

- a. By 2023, develop a consensus vision for how licensing of intellectual property rights
 derived from academic or publicly funded research can address inequity and adopt
 global equitable access clauses from the earliest stage of research.
- b. By 2024, initiate a resource center to support licensing negotiations and intellectual
 property capacity building by scientists that may not have the resources or background
 knowledge to effectively achieve access to patented technologies.

Strategic Goal 5.3. Build a sustainable and more balanced geographic distribution of manufacturing capacity with expertise to manufacture high-quality vaccines for local use.

2040 Milestones:

- a. By 2024, establish a consensus as to what is acceptable geographic distribution for
 vaccine manufacturing and potential pathways for transitioning from variant-specific
 SARS-CoV-2 vaccines to broadly protective vaccines.
- b. By 2027, provide the necessary resources to ensure 100% of countries with vaccine
 manufacturing capacity are able to at least partially implement the WHO inspection
 indicators, as defined by the WHO Global Benchmarking Tool (WHO 2021).
- 2047 c. By 2028, through the WHO mRNA Technology Transfer Hub and additional global
 initiatives supporting the manufacture of other vaccine platform technologies: (1) design
 and build manufacturing sites meeting the GMP criteria for vaccines, (2) transfer
- 2050 expertise for mRNA platforms and other relevant technologies, and (3) begin producing 2051 vaccines in at least several new locations with consideration as to how to maintain
- 2052 capacity over time and through inter-pandemic years (Medicines Patent Pool 2022).
- 2054 Additional Research Priorities
- Coordinate efforts to address the various challenges facing financing of R&D for broadly
 protective coronavirus vaccines.

2067 2068

- Maintain increased global sharing and communication across scientists, vaccine developers, manufacturers, funders, and government bodies.
- **Review** the experience with the TRIPS agreements and voluntary non-enforcement of intellectual property rights during the early years of the COVID-19 pandemic.
- Continue to build capacity and collaboration among NRAs worldwide, including joint
 reviews of clinical trials and licensure applications, and agreement on global standards
 for licensure of protective coronavirus vaccines.
- Continue to gather data on the role and impact of coronavirus vaccines (including vaccine effectiveness) to build vaccine demand, which will in turn impact policy development.

53 | Page

REFERENCES 2069 Agarwal R, Gaule P. What drives innovation? Lessons from COVID-19 R&D. J Health Econ 2070 2071 2022 Mar;82:102591 [Full text] 2072 2073 Agrawal AS, Garron T, Tao X, et al. Generation of a transgenic mouse model of Middle East 2074 respiratory syndrome coronavirus infection and disease. J Virol 2015 Apr;89(7):3659-70 [Full 2075 text] 2076 2077 Ahmed-Hassan H, Sisson B, Shukla RK, et al. Innate immune responses to highly pathogenic 2078 coronaviruses and other significant respiratory viral infections. Front Immunol 2020;11:1979 2079 [Full text] 2080 Alkhovsky S, Lenshin S, Romashin A, et al. SARS-like coronaviruses in horseshoe bats 2081 (Rhinolophus spp) in Russia, 2020. Viruses 2022 Jan 9;14(1):113 [Full text] 2082 2083 2084 Alshrari AS, Hudu SA, Imran M, et al. Innovations and development of Covid-19 vaccines: A patent review. J Infect Public Health 2022 Jan;15(1):123-131 [Full text] 2085 2086 2087 Altmann DM, Boyton RJ. COVID-19 vaccination: the road ahead. Science 2022 Mar 2088 11;375(6585):1127-1132 [Full text] 2089 Ansariniya H, Seifati SM, Zaker E, et al. Comparison of Immune Response between SARS, 2090 MERS, and COVID-19 Infection, Perspective on Vaccine Design and Development, Biomed 2091 Res Int. 2021 Jan 22:8870425 [Full Text] 2092 2093 2094 Anthony SJ, Johnson CK, Greig DJ, et al. Global patterns in coronavirus diversity. Virus Evol 2095 2017;3(1):vex012 [Full text] 2096 Azzi L, Dalla Gasperina D, Veronesi G, et al. Mucosal immune response in BNT162b2 COVID-2097 2098 19 vaccine recipients. EbioMedicine 2022;75:103788 [Full text] 2099 2100 Baric R. Major challenges with development of pan-coronavirus vaccines. WHO consultation on 2101 COVID-19 vaccines research—advancing the development of pan-sarbecovirus vaccines. 2102 World Health Organization. Mar 25, 2022 [Presentation 13:54] 2103 2104 Baseler L, de Wit E, Feldmann H. A comparative review of animal models of Middle East respiratory syndrome coronavirus infection. Vet Pathol 2016 May;53(3):521-31 [Full text] 2105 2106 Bean DJ, Sagar M. Family matters for coronavirus disease and vaccines. J Clin Invest 2021 2107 Dec 15;131(24):e155615 [Full text] 2108 2109 Beasley DWC, Brasel TL, Comer JE. First vaccine approval under the FDA Animal Rule. NPJ 2110 2111 Vaccines 2016;1:16013 [Full text]

2112	
2113	Begum J, Mir NA, Dev K, Buy et al. Challenges and prospects of COVID-19 vaccine
2114	development based on the progress made in SARS and MERS vaccine development.
2115	Transbound Emerg Dis. 2021 May;68(3):1111-1124 [Full Text]
2116	
2117	Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of
2118	protective immunity against mucosal pathogens? J Immunol 2009 Dec 1;183(11):6883-92 [Full
2119	text]
2120	
2121	Bhattacharya, D., Instructing durable humoral immunity for COVID-19 and other vaccinable
2122	diseases. Immunity 2022 Jun 14;55(6):945-964 [Full text]
2123	
2124	Branswell H. COVID-19 vaccine market is getting crowded. Stat News 2022 Mar 21 [Full text]
2125	
2126	Braxton AM, Creisher PS, Ruiz-Bedoya CA, et al. Hamsters as a model of Severe Acute
2127	Respiratory Syndrome Coronavirus-2. Comp Med. 2021 Oct 1;71(5):398-410 [Full text]
2128	
2120	Britto C, Alter G. The next frontier in vaccine design: blending immune correlates of protection
2125	into rational vaccine design. Curr Opin Immunol 2022 Aug 13;78:102234 [Full text]
2130	
2131	Brockhurst JK, Villano JS. The role of animal research in pandemic responses. Comp Med.
2133	2021 Oct 1;71(5):359-368 [Full text]
2134	Prüssen H. COVID 10: vessingtion problems, Environ Mierobiol 2021, Jun;22(6):2078, 2800 [Eul
2135	Brüssow H. COVID-19: vaccination problems. Environ Microbiol 2021 Jun;23(6):2878-2890 [Full tout]
2136	<u>text</u>
2137	
2138	Cameroni E, Bowen JE, Rosen LE, et al. Broadly neutralizing antibodies overcome SARS-CoV-
2139	2 Omicron antigenic shift. Nature 2022 Feb;602(7898):664-670 [Full text]
2140	
2141	Carmen JM, Shrivastava S, Lu Z, et al. SARS-CoV-2 ferritin nanoparticle vaccine induces
2142	robust innate immune activity driving polyfunctional spike-specific T cell responses. NPJ
2143	Vaccines 2021 Dec 13;6(1):151 [Full text]
2144	
2145	Carvalho C, Gaspar A, Knight A, et al. Ethical and scientific pitfalls concerning laboratory
2146	research with non-Human primates, and possible solutions. Animals (Basel) 2018 Dec
2147	29;9(1):12 [Full text]
2148	
2149	Casel MAB, Rollon RG, Choi YK. Experimental animal models of coronavirus infections:
2150	strengths and limitations. Immune Netw. 2021 Apr 26;21(2):e12 [Full text]
2151	
2152	Chen Z, Azman AS, Chen X, et al. Global landscape of SARS-CoV-2 genomic surveillance and
2153	data sharing. Nat Genet 2022;54(4):499-507 [<u>Full text]</u>
2154	

2155	Chen L, Liu B, Yang J, et al. DBatVir: the database of bat-associated viruses. Database
2156	(Oxford) 2014;2014:bau021 [<u>Full text]</u>
2157	
2158	Chiu NC, Chi H, Tu YK, et al. To mix or not to mix? A rapid systematic review of heterologous
2159	prime-boost covid-19 vaccination. Expert Rev Vaccines. 2021 Oct;20(10):1211-1220 [Full Text]
2160	······································
2161	CIDRAP. Influenza Vaccines R&D Roadmap. 2021 Sept [Full text]
2162	
2162	Cleary SJ, Magnen M, et al, Page CP. Update on animal models for COVID-19 research. Br J
2163	Pharmacol. 2020 Dec;177(24):5679-5681 [Full text]
2164 2165	
2165	Cohen AA, Gnanapragasam PNP, Lee YE, et al. Mosaic nanoparticles elicit cross-reactive
2167	immune responses to zoonotic coronaviruses in mice. Science 2021 Feb 12;371(6530):735-741
2168	[Full text]
2169	
2170	Cohen AA, van Doremalen N, Greaney AJ, et al. Mosaic RBD nanoparticles protect against
2171	multiple sarbecovirus challenges in animal models. bioRxiv [Preprint]. 2022 Mar
2172	28:2022.03.25.485875 [Full text]
2173	
2174	Cohen J. The dream vaccine: Why stop at just SARS-CoV-2? Vaccines in development aim to
2175	protect against many coronaviruses at once. Science 15 April 2021 [Full text]
2176	
2177	Collier AY, Brown CM, McMahan KA, et al. Characterization of immune responses in fully
2178	vaccinated individuals after breakthrough infection with the SARS-CoV-2 delta variant. Sci
2179 2180	Transl Med 2022 Apr 20;14(641):eabn6150 [<u>Full text]</u>
2180	Contreras, MA, Arnegard, ME, Chang MC, et al. Nonhuman primate models for SARS-CoV-2
2182	Research: Managing demand for specific-pathogen-free (SPF) animals. Lab Anim 2021;50:200–
2182	201 [Full text]
2183	
2185	Cotten M, Robertson DL, Phan MVT. Unique protein features of SARS-CoV-2 relative to other
2185	Sarbecoviruses Virus Evol 2021;7(2):veab067 [Full text]
2180	
2187	Crowe JE Jr. Human antibodies for viral infections. Annu Rev Immunol 2022 Feb 3 [PubMed]
2188	
2189	Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91(1):157-
2191	160 [Full text]
2192	Cuppinghom AA Doozok D Wood U.N. One Lealth amorging infantious discourse and withility
2193	Cunningham AA, Daszak P, Wood JLN. One Health, emerging infectious diseases and wildlife:
2194	two decades of progress? Philos Trans R Soc Lond B Biol Sci 2017;372(1725):20160167 [Full
2195	text
2196	
2197	Dai L, Zheng T, Xu K, et al. A universal design of betacoronavirus vaccines against COVID-19,
2198	MERS, and SARS. Cell. 2020 Aug 6;182(3):722-733 [Full text]

_	
2199	
2200	Dangi T, Palacio N, Sanchez S, et al. Cross-protective immunity following coronavirus
2201	vaccination and coronavirus infection. J Clin Invest 2021 Dec 15;131(24):e151969 [Full text]
2202	
2203	DeGrace MM, Ghedin E, Frieman MB, et al. Defining the risk of SARS-CoV-2 variants on
2204	immune protection. Nature. 2022 Mar 31 [Full text]
2205	
2206	Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2.
2207	Nat Immunol 2022 Feb;23(2):165-176 [<u>Full text]</u>
2208	
2209	Dinnon KH 3rd, Leist SR, Schäfer A, et al. A mouse-adapted model of SARS-CoV-2 to test
2210	COVID-19 countermeasures [published correction appears in Nature 2021
2211	Feb;590(7844):E22]. Nature 2020;586(7830):560-566 [Full text]
2212	
2213	Du X, Guo Z, Fan W, et al. Establishment of a humanized swine model for COVID-19. Cell
2214	Discov 2021;7(1):70 [Full text]
2215	
2216	Eguia RT, Crawford KHD, Stevens-Ayers T, et al. A human coronavirus evolves antigenically to
2217	
2218	Espinoza C, Alarcón M. The immune response to SARS-CoV-2: mechanisms, aging, sequelae,
2219	and vaccines. Mini Rev Med Chem 2022;22(16):2166-2185 [Full text]
2220	
2221	El-Sayed A, Kamel M. Coronaviruses in humans and animals: the role of bats in viral evolution.
2222	Environ Sci Pollut Res Int 2021;28(16):19589-19600 [Full text]
2223	
2224	European Centre for Disease Prevention and Control (ECDC). MERS-CoV worldwide overview:
2225	Situation update 5 July 2022 [accessed July 2022] [Web page]
2226	
2227	Excler JL, Delvecchio CJ, Wiley RE, et al. Toward developing a preventive MERS-CoV
2228	vaccine—report from a workshop organized by the Saudi Arabia Ministry of Health and the
2229	International Vaccine Institute, Riyadh, Saudi Arabia, November 14-15, 2015. Emerg Infect Dis
2230	2016;22(8):e160229 [Full text]
2231	
2232	Fan C, Wu Y, Rui X, et al. Animal models for COVID-19: advances, gaps and perspectives.
2233	Signal Transduct Target Ther 2022 Jul 7;7(1):220 [Full text]
2234	
2234	Forni D, Cagliani R, Clerici M, et al. Molecular evolution of human coronavirus genomes. Trends
2235	Microbiol 2017;25(1):35-48 [Full text]
2230	
2237	Frere JJ, Serafini RA, Pryce KD, et al. SARS-CoV-2 infection in hamsters and humans results in
2238	lasting and unique systemic perturbations after recovery. Sci Transl Med 2022 Sep
2239	28;14(664):eabq3059 [Full text]
2240	
<u> </u>	

2242	Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-
2243	CoV-2 and the COVID-19 pandemic. Front Pharmacol 2020 Jun 19;11:937 [Full text]
2244 2245	Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature
2245	2021 Mar;591(7851):639-644 [Full text]
2247	
2248	Ghai RR, Carpenter A, Liew AY, et al. Animal reservoirs and hosts for emerging
2249	alphacoronaviruses and betacoronaviruses. Emerg Infect Dis 2021;27(4):1015-1022 [Full text]
2250	Cilbert DR. Mentefieri DC. McDermett AR. et al. Immune correlates enclusis of the mDNA 1972
2251 2252	Gilbert PB, Montefiori DC, McDermott AB, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 2022 Jan 7;375(6576):43-50 [Full text]
2252	
2253 2254	Goldblatt D, Alter G, Crotty S, et al. Correlates of protection against SARS-CoV-2 infection and COVID-19 disease. Immunol Rev 2022 Jun 5 [Full text] (Goldblatt 2022a)
2255	Goldblatt D, Fiore-Gartland A, Johnson M, et al. Towards a population-based threshold of
2256	protection for COVID-19 vaccines. Vaccine 2022 Jan 21;40(2):306-315 [Full text] (Goldblatt
2257	2022b)
2258	
2259 2260	Goraichuk IV, Arefiev V, Stegniy BT, et al. Zoonotic and reverse zoonotic transmissibility of SARS-CoV-2. Virus Res 2021;302:198473 [Full text]
2260	SARS-COV-2. VIIUS Res 2021,302.196473 [Full text]
2261	Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol.
2263	2015;235(2):185-195 [Full text]
2264	
2265	Hachmann NP, Miller J, Collier AY, et al. Neutralization escape by SARS-CoV-2 Omicron
2266	subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med 2022 Jul 7;387(1):86-88 [Full text]
2267 2268	Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune
2268	escape. Nat Rev Microbiol 2021;19(7):409-424 [Full text]
2270	
2271	Haugen HM. Does TRIPS (Agreement on Trade-Related Aspects of Intellectual Property Rights)
2272	prevent COVID-19 vaccines as a global public good? J World Intellect Prop 2021 Jul;24(3-
2273	4):195-220 [<u>Full text</u>]
2274	
2275 2276	Hauser BM, Sangesland M, St Denis KJ, et al. Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell Rep 2022 Mar 22;38(12):110561
2276	[Full text]
2278	
2279	Hild SA, Chang MC, Murphy SJ, et al. Nonhuman primate models for SARS-CoV-2 research:
2280	Infrastructure needs for pandemic preparedness. Lab Anim (NY) 2021 Jun;50(6):140-141 [Full
2281	text]
2282	

Hodgson SH, Mansatta K, Mallett G, et al. What defines an efficacious COVID-19 vaccine? A 2283 2284 review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. 2285 Lancet Infect Dis. 2021 Feb;21(2):e26-e35 [Full Text] 2286 Holmes EC, Goldstein SA, Rasmussen AL, et al. The origins of SARS-CoV-2: a critical 2287 2288 review. Cell 2021;184(19):4848-4856 [Full text] 2289 2290 Hotez PJ, Bottazzi ME. Developing a low-cost and accessible COVID-19 vaccine for global 2291 health. PLoS Negl Trop Dis 2020 Jul 29;14(7):e0008548 [Full text] 2292 2293 Houtman J. Shultz L. Rivera JM, et al. Variants, sublineages, and recombinants: the constantly 2294 changing genome of SARS-CoV-2. The Rockefeller Foundation. March 25, 2022 [Full text] 2295 Hsieh CL, Werner AP, Leist SR, et al. Stabilized coronavirus spike stem elicits a broadly 2296 protective antibody. Cell Rep. 2021 Nov 2;37(5):109929 [Full Text] 2297 2298 2299 Huang AT, Garcia-Carreras B, Hitchings MDT, et al. A systematic review of antibody mediated 2300 immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat 2301 Commun 2020 Sep 17;11(1):4704 [Full text] 2302 Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19 [published 2303 correction appears in Nat Rev Microbiol 2022 May;20(5):315]. Nat Rev Microbiol 2304 2021;19(3):141-154 [Full text] 2305 2306 2307 Hu B, Zeng LP, Yang XL, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 2017 Nov 2308 30;13(11):e1006698. [Full text] 2309 2310 Inoue T, Shinnakasu R, Kurosaki T. Generation of high quality memory B cells. Front Immunol 2311 2022 Jan 12;12:825813 [Full text] 2312 2313 2314 Irving AT, Ahn M, Goh G, et al. Lessons from the host defenses of bats, a unique viral reservoir. 2315 Nature 2021 Jan;589(7842):363-370 [Full text] 2316 2317 Iwasaki A. Exploiting mucosal immunity for antiviral vaccines. Annu Rev Immunol 2016 May 2318 20;34:575-608 [PubMed] 2319 2320 Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020 Dec; 15(12):1441-2321 2322 1455 [PubMed] 2323 2324 Jarnagin K, Alvarez O, Shresta S, et al. Animal models for SARS-Cov2/Covid19 research-A commentary. Biochem Pharmacol 2021 Jun;188:114543 [Full text] 2325 2326

2327 2328 2329 2330	Jin P, Li J, Pan H, et al. Immunological surrogate endpoints of COVID-2019 vaccines: the evidence we have versus the evidence we need. Signal Transduct Target Ther 2021;6(1):48 [Full text]
2331 2332 2333 2334	Joyce MG, King HAD, Elakhal-Naouar I, et al. A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Sci Transl Med 2022 Feb 16;14(632):eabi5735 [Full text]
2335 2336 2337	Kahla K. COVID-19 research and innovation: Powering the world's pandemic response–now and in the future. World Health Organization. 2022 Feb 24-25 [Presentation 2:20:00]
2338 2339 2340 2341	Kaplonek P, Cizmeci D, Fischinger S, et al. mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Sci Transl Med 2022 Mar 29:eabm2311 [Full text]
2342 2343 2344	Karczmarzyk K, Kesik-Brodacka M. Attacking the intruder at the gate: prospects of mucosal anti SARS-CoV-2 vaccines. Pathogens 2022 Jan 19;11(2):117 [Full text]
2345 2346 2347	Karim SSA. Vaccines and SARS-CoV-2 variants: the urgent need for a correlate of protection. Lancet 2021 Apr 3;397(10281):1263-1264 [Full text]
2348 2349 2350 2351	Kent SJ, Khoury DS, Reynaldi A, et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast? Nat Rev Immunol 2022 Jun;22(6):387-397 [Full text]
2351 2352 2353 2354 2355	Kesselheim AS, Darrow JJ, Kulldorff M, et al. An Overview of vaccine development, approval, and regulation, with Implications for COVID-19. Health Aff (Millwood) 2021 Jan;40(1):25-32 [Full text]
2356 2357 2358 2359	Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021 Jul;27(7):1205-1211 [Full text]
2360 2361 2362	Killingley B, Mann AJ, Kalinova M, et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat Med (2022) [Full text]
2363 2364 2365	Kim YI, Casel MAB, Choi YK. Transmissibility and pathogenicity of SARS-CoV-2 variants in animal models. J Microbiol. 2022 Mar;60(3):255-267 [Full text]
2366 2367 2368	Kistler KE, Bedford T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229e. Elife 2021;10:e64509 [Full text]
2369 2370	Kitsara I. COVID-19 Research and innovation: Powering the world's pandemic response-now and in the future. World Health Organization. 2022 Feb 24-25 [Presentation 1:50:00]

2271	
2371	Krommer F. Correlates of protection from SARS CoV(2) infection. Langet 2021 Apr
2372	Krammer F. Correlates of protection from SARS-CoV-2 infection. Lancet 2021 Apr
2373	17;397(10283):1421-1423 [<u>Full text]</u>
2374	
2375	Krammer F. WHO R&D blueprint consultation: Developing a framework for evaluating new
2376	COVID-19 vaccines. World Health Organization, 2022 Feb 23 [Presentation 2:40:00]
2377	
2378	Krause PR, Arora N, Dowling W, et al. Making more COVID-19 vaccines available to address
2379	global needs: Considerations and a framework for their evaluation. Vaccine 2022 Sep
2380	22;40(40):5749-5751 [Full text] Krause 2022
2381	
2382	Labombarde JG, Pillai MR, Wehenkel M, et al. Induction of broadly reactive influenza antibodies
2383	increases susceptibility to autoimmunity. Cell Rep 2022 Mar 8;38(10):110482 [Full text]
2384	
2385	Laidlaw BJ, Ellebedy AH. The germinal centre B cell response to SARS-CoV-2. Nat Rev
2386	Immunol 2022 Jan;22(1):7-18 [<u>Full text]</u>
2387	
2388	Lancet. Genomic sequencing in pandemics. Lancet 2021 Feb 6;397(10273):445 [Full text]
2389	
2390	Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members. Operation
2391	Warp Speed: Implications for global vaccine security. Lancet Glob Health 2021 Jul;9(7):e1017-
2392	e1021 [Full text]
2393	
2394	Latinne A, Hu B, Olival KJ, et al. Origin and cross-species transmission of bat coronaviruses in
2395	China. Nat Commun 2020 Aug 25;11:4235 [Full text]
2396	
2397	Lavelle EC, Ward RW. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol 2022
2398	Apr;22(4):236-250 [Full text]
2399	
2400	Lednicky JA, Tagliamonte MS, White SK, et al. Independent infections of porcine
2401	deltacoronavirus among Haitian children. Nature 2021;600(7887):133-137 [Full text]
2402	
2403	Lee A, Wimmers F, Pulendran B. Epigenetic adjuvants: durable reprogramming of the innate
2404	immune system with adjuvants. Curr Opin Immunol 2022 Aug;77:102189 [Full text]
2405	
2406	Letko M, Seifert SN, Olival KJ, et al. Bat-borne virus diversity, spillover and emergence. Nat Rev
2407	Microbiol 2020a;18(8):461-471 [<u>Full text</u>] (Letko 2020a)
2408	
2409	Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-
2410	CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020b Apr;5(4):562-569 [Full text]
2411	(Letko 2020b)
2412	
2413	Levine M. WHO R&D blueprint consultation: Developing a framework for evaluating new
2414	COVID-19 vaccines. World Health

2445	
2415	LiVD. ChiWW. Su III at al. Community graning developments from CADC and MEDC to
2416	Li YD, Chi WY, Su JH, et al. Coronavirus vaccine development: from SARS and MERS to
2417	COVID-19. J Biomed Sci 2020 Dec 20;27(1):104 [Full text]
2418	
2419	Logue JK, Chu HY. Challenges and lessons in establishing human immune profiling
2420	cohort studies for pandemic response. Immunol Rev 2022 Aug;309(1):8-11 [<u>Full text]</u>
2421	
2422	López-Muñoz AD, Kosik I, Holly J, et al. Cell surface SARS-CoV-2 nucleocapsid protein
2423	modulates innate and adaptive immunity. bioRxiv [Preprint] 2021 Dec 13:2021.12.10.472169
2424	[Full text]
2425	
2426	Markov PV, Katzourakis A, Stilianakis NI. Antigenic evolution will lead to new SARS-CoV-2
2427	variants with unpredictable severity. Nat Rev Microbiol 2022;20(5):251-252 [Full text]
2428	
2429	Martinez DR, Schäfer A, Leist SR, et al. Chimeric spike mRNA vaccines protect against
2430	Sarbecovirus challenge in mice. Science 2021 Aug 27;373(6558):991-998 [Full text]
2431	
2432	Maurer-Stroh, S. WHO R&D blueprint consultation: Developing a framework for evaluating new
2433	COVID-19 vaccines. World Health Organization. 2022 Feb 23 [Presentation 1:15:00]
2434	
2435	McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected
2436	with severe acute respiratory syndrome coronavirus. J Virol 2007;81(2):813-821 [Full text]
2437	······································
2438	McGrath JJC, Li L, Wilson PC. Memory B cell diversity: insights for optimized vaccine design.
2439	Trends Immunol 2022 Apr 4:S1471-4906(22)00054-0 [Full text]
2440	McMahan K, Giffin V, Tostanoski LH, et al. Reduced pathogenicity of the SARS-CoV-2 omicron
2441	variant in hamsters. Med (NY) 2022 Apr 8;3(4):262-268.e4 [Full text]
2442	Mendelson M, Venter F, Moshabela M, et al. The political theatre of the UK's travel ban on
2443	South Africa. Lancet 2021 Dec 18;398(10318):2211-2213 [Full text]
2444	
2445	Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination
2446	in the respiratory tract. Immunity 2022 May 10;55(5):749-780 [Full text]
2447	
2448	Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry
2449	receptors. FEMS Microbiol Rev 2021;45(3):fuaa057 [Full text]
2450	
2451	Misra A, Theel ES. Immunity to SARS-CoV-2: what do we know and should we be testing for it?
2452	J Clin Microbiol 2022 Mar 7 [<u>Full Text]</u>
2453	
2454	Modjarrad K, Moorthy VS, Ben Embarek P, et al. A roadmap for MERS-CoV research and
2455	product development: report from a World Health Organization consultation. Nat Med 2016 Jul
2456	7;22(7):701-5 [Full text]

0.457	
2457	Madiana d K MULO a succession of OOV/ID 40 secondary and a state device succession of the device
2458	Modjarrod K. WHO consultation on COVID-19 vaccines research - Advancing the development
2459	of pan-sarbecovirus vaccines. World Health Organization. 2022 Mar 25 [Presentation 1:39:00]
2460	
2461	Morens DM, Folkers GK, Fauci AS. The concept of classical herd immunity may not apply to
2462	COVID-19. J Infect Dis 2022 Mar 31:jiac109 [Full text] (Morens 2022a)
2463	
2464	Morens DM, Taubenberger JK, Fauci AS. Universal coronavirus vaccines - an urgent need. N
2465	Engl J Med 2022 Jan 27;386(4):297-299 <u>[Full text]</u> (Morens 2022b)
2466	
2467	Monrad JT, Sandbrink JB, Cherian NG. Promoting versatile vaccine development for emerging
2468	pandemics. NPJ Vaccines 2021 Feb 11;6(1):26 [<u>Full text]</u>
2469	
2470	Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol 2022 Feb;23(2):186-
2471	193 [Full text]
2472	
2473	Mudgal R, Nehul S, Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-
2474	2. Hum Vaccin Immunother 2020;16(12):2921-2931 [Full text]
2475	
2476	Mueni Katee S, Keambou Tiambo C. Discussing the drawbacks of the implementation of access
2477	and benefit sharing of the Nagoya Protocol following the COVID-19 pandemic. Front Public
2478	Health 2021 Dec 10;9:639581 [Full text]
2479	
2480	Muñoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature. 2020
2481	Oct;586(7830):509-515 [Full text]
2482	
2483	Muñoz-Fontela C, Widerspick L, Albrecht RA, et al. Advances and gaps in SARS-CoV-2
2484	infection models. PLoS Pathog 2022;18(1):e1010161. Published 2022 Jan 13 [Full text]
2485	
2486	Nelson SA, Sant AJ. Potentiating lung mucosal immunity through intranasal vaccination. Front
2487	Immunol 2021 Dec 14;12:808527 [Full text]
2488	
2489	Nohynek H. COVID-19 research and innovation: Powering the world's pandemic response-now
2490	and in the future. World Health Organization. 2022 Feb 24-25 [Presentation 2:38:00]
2491	
2492	Obermeyer F, Jankowiak M, Barkas N, et al. Analysis of 6.4 million SARS-CoV-2 genomes
2493	identifies mutations associated with fitness. Science 2022 May 24;abm1208 [Full text]
2494	
2495	Olival KJ, Hosseini PR, Zambrana-Torrelio C, et al. Host and viral traits predict zoonotic
2496	spillover from mammals. Nature 2017 Jun 29;546(7660):646-650 [Full text]
2497	· · · ·
2498	Openshaw PJM. Using correlates to accelerate vaccinology. Science 2022 Jan 7;375(6576):22-
2499	23 [Full text]
2500	

2501 2502	Pack SM and Peters PJ. "SARS-CoV-2–Specific Vaccine Candidates; the Contribution of Structural Vaccinology." Vaccines. 2022; 10 (2): 236 [Full Text]
2503 2504 2505 2506 2507	Pascal KE, Coleman CM, Mujica AO, et al. Pre- and postexposure efficacy of fully human antibodies against spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8738-43 [Full text]
2507 2508 2509 2510	Peacock TP, Penrice-Randal R, Hiscox JA, et al. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021;102(4):001584 [Full text]
2511 2512 2513	Pecetta S, Kratochvil S, Kato Y, et al. Immunology and technology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. Pharmacol Rev 2022 Jan;74(1):313-339 [Full text]
2514 2515 2516 2517	Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med 2003 Dec 18;349(25):2431-41 [Full text]
2518 2519 2520 2521	Pickering B, Lung O, Maguire F, et al. Highly divergent white-tailed deer SARS-CoV-2 with potential deer-to-human transmission [Preprint]. bioRxiv: The Preprint Server for Biology. Posted Feb 25, 2022 [Full text]
2521 2522 2523 2524	Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol 2010 Jul;17(7):1055-65 [Full text]
2525 2526 2527	Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2020 Feb 24;38(9):2250-2257 [PubMed]
2528 2529 2530	Poland GA, Ovsyannikova IG, Kennedy RB. The need for broadly protective COVID-19 vaccines: beyond S-only approaches. Vaccine 2021 Jul 13;39(31):4239-4241 [Full text]
2531 2532 2533	Prasad SD. COVID-19 research and innovation: Powering the world's pandemic response-now and in the future. World Health Organization. 2022 Feb 24-25 [Presentation 2:17:00]
2534 2535 2536	Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol. 2022 Jun 27 [Full text]
2537 2538 2539	Qin S, Li R, Zheng Z, et al. Review of selected animal models for respiratory coronavirus infection and its application in drug research. J Med Virol. 2022 Mar 13 [Full text]
2540 2541 2542	Rabalski L, Kosinski M, Mazur-Panasiuk N, et al. Zoonotic spill-over of SARS-CoV-2: mink- adapted virus in humans. Clin Microbiol Infect 2022 Mar;28(3):451.e1-451.e4 [Full text]

Rahman MM, Masum MHU, Wajed S, et al. A comprehensive review on COVID-19 vaccines: 2543 2544 development, effectiveness, adverse effects, distribution and challenges [published online 2545 ahead of print, 2022 Feb 1]. Virus disease 2022;1-22 [Full text] 2546 2547 Ren W, Qu X, Li W, et al. Difference in receptor usage between severe acute respiratory 2548 syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol 2008;82(4):1899-2549 1907 [Full text] 2550 2551 Rees H. WHO consultation on COVID-19 vaccines research: Advancing the development of 2552 pan-sarbecovirus vaccines. World Health Organization. 2022 Mar 25 [Presentation 3:20:00] (Rees 2022b) 2553 2554 2555 Rees H. WHO consultation on COVID vaccines research: Why do we need a pan-sarbecovirus vaccine? World Health Organization. 2022 Jan 28 [Presentation 5:10:00] (Rees 2022a) 2556 2557 2558 Rizvi Z. COVID-19 Research and innovation: Powering the world's pandemic response-now 2559 and in the future. World Health Organization. 2022 Feb 24-25 [Presentation 2:32:00] 2560 2561 Roberts A, Lamirande EW, Vogel L, et al. Animal models and vaccines for SARS-CoV infection. Virus Res 2008;133(1):20-32 [Full text] 2562 2563 Rodda LB, Morawski PA, Pruner KB, et al. Imprinted SARS-CoV-2-specific memory 2564 lymphocytes define hybrid immunity. Cell 2022 Apr 28;185(9):1588-1601.e14 [Full text] 2565 2566 2567 Ruiz-Aravena M, McKee C, Gamble A, et al. Ecology, evolution and spillover of coronaviruses from bats [published correction appears in Nat Rev Microbiol 2022 Jan 13;:]. Nat Rev Microbiol 2568 2569 2022;20(5):299-314 [Full text] 2570 Salquero FJ, White AD, Slack GS, et al. Comparison of rhesus and cynomolgus macagues as 2571 an infection model for COVID-19. Nat Commun. 2021 Feb 24;12(1):1260 [Full text] 2572 2573 2574 Sampat BN, Shadlen KC. The COVID-19 innovation system. Health Aff (Millwood) 2021 2575 Mar;40(3):400-409 [PubMed] 2576 Sánchez CA, Li H, Phelps KL, et al. A strategy to assess spillover risk of bat SARS-related 2577 2578 coronaviruses in Southeast Asia. medRxiv [Preprint]. 2021 Sep 14:2021.09.09.21263359 [Full 2579 text] 2580 Sandbrink JB, Koblentz GD. Biosecurity risks associated with vaccine platform technologies. 2581 2582 Vaccine. 2022 Apr 14;40(17):2514-2523 [Full Text] 2583 2584 Sauer MM, Tortorici MA, Park YJ, et al. Structural basis for broad coronavirus neutralization. Nat Struct Mol Biol 2021 Jun;28(6):478-486 [Full text] 2585 2586

2587	Saunders KO, Lee E, Parks R, et al. Neutralizing antibody vaccine for pandemic and pre-
2588	emergent coronaviruses. Nature 2021;594(7864):553-559 [<u>Full text</u>]
2589	
2590	Schuitemaker H. WHO consultation on COVID-19 vaccines research - Advancing the
2591	development of pan-sarbecovirus vaccines. World Health Organization. 2022 Mar 25
2592	Presentation 2:40:00
2593	
2594	Sefik E, Israelow B, Mirza H, et al. A humanized mouse model of chronic COVID-19. Nat
2595	Biotechnol 2021 Dec 17. Epub ahead of print [<u>Full text</u>]
2596	
2597	Sekhar A, Kang G. Human challenge trials in vaccine development. Semin Immunol
2598	2020;50:101429 [<u>Full text</u>]
2599	
2600	Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021 Feb
2601	18;184(4):861-880 [Full text]
2602	
2603	Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines.
2604	Immunol Rev 2022 Sep;310(1):27-46 [Full text]
2605	
2606	Sharma O, Sultan AA, Ding H, et al. A Review of the Progress and Challenges of Developing a
2607	Vaccine for COVID-19. Front Immunol. 2020 Oct 14;11:585354 [Full Text]
2608	
2609	Sharun K, Dhama K, Pawde AM, et al. SARS-CoV-2 in animals: potential for unknown reservoir
2610	hosts and public health implications. Vet Q. 2021;41(1):181-201 [Full text]
2611	
2612	Shepherd BO, Chang D, Vasan S, et al. HIV and SARS-CoV-2: Tracing a Path of Vaccine
2613	Research and Development. Current HIV/AIDS Reports. 2022; 19(1), 86–93 [Full Text]
2614	
2615	Sherman AC, Desjardins M, Baden LR. Vaccine-Induced Severe Acute Respiratory Syndrome
2616	Coronavirus 2 antibody response and the path to accelerating development (determining a
2617	correlate of protection). Clin Lab Med 2022 Mar;42(1):111-128 [Full text]
2618	
2619	Sherman AC, Mehta A, Dickert NW, et al. The future of flu: a review of the human challenge
2620	model and systems biology for advancement of influenza vaccinology. Front Cell Infect
2621	Microbiol 2019 Apr 17;9:107 [Full text]
2622	
2623	Shou S, Liu M, Yang Y, et al. Animal models for COVID-19: hamsters, mouse, ferret, mink, tree
2624	shrew, and non-human primates. Front Microbiol. 2021 Aug 31;12:626553 [<u>Full text</u>]
2625	
2626	Siggins MK, Thwaites RS, Openshaw PJM. Durability of immunity to SARS-CoV-2 and other
2627	respiratory viruses. Trends Microbiol 2021 Jul;29(7):648-662 [Full text]
2628	
2629	Sila T, Sunghan J, Laochareonsuk W, et al. Suspected cat-to-human transmission of SARS-
2630	CoV-2, Thailand, July-September 2021. Emerg Infect Dis 2022 Jul;28(7):1485-1488 [Full text]

2631	
2632	Simon V, Kota V, Bloomquist RF, et al. PARIS and SPARTA: finding the Achilles' heel of SARS-
2633	CoV-2. mSphere 2022 Jun 29;7(3):e0017922 [<u>Full text]</u>
2634	
2635	Singh A, Singh RS, Sarma P, et al. A comprehensive review of animal models for
2636	coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin. 2020 Jun;35(3):290-304
2637	[Full text]
2638	
2639	Singh J, Pandit P, McArthur AG, et al. Evolutionary trajectory of SARS-CoV-2 and emerging
2640	variants. Virol J 2021;18(1):166 [Full text]
2641	
2642	Soraci L, Lattanzio F, Soraci G, et al. (2022). COVID-19 Vaccines: Current and Future
2643	Perspectives. Vaccines, 10(4), 608 [Full Text]
2644	
2645	Starr TN, Czudnochowski N, Liu Z, et al. SARS-CoV-2 RBD antibodies that maximize breadth
2646	and resistance to escape. Nature 2021 Sep;597(7874):97-102 [Full text]
2647	
2648	Subbarao K. The success of SARS-CoV-2 vaccines and challenges ahead. Cell Host Microbe
2649	2021;29(7):1111-1123 [<u>Full text</u>]
2650	
2651	Sui Y, Bekele Y, Berzofsky JA. Potential SARS-CoV-2 immune correlates of protection in
2652	infection and vaccine immunization. Pathogens 2021 Jan 30;10(2):138 [Full text]
2653	
2654	Sun J, Zhuang Z, Zheng J, et al. Generation of a broadly useful model for COVID-19
2655	pathogenesis, vaccination, and treatment. Cell 2020 Aug 6;182(3):734-743.e5. [Full text]
2656	
2657	Sun S, Chen X, Lin J, et al. Broad neutralization against SARS-CoV-2 variants induced by a
2658	next-generation protein vaccine V-01. Cell Discov 2021 Nov 30;7(1):114 [Full text]
2659	
2660	Sung H-D, Kim N, Lee Y, et al. (2021). Protein-Based Nanoparticle Vaccines for SARS-CoV-2.
2661	International Journal of Molecular Sciences. 2021;22(24), 13445 [Full Text]
2662	Suryawanshi R, Ott M. SARS-CoV-2 hybrid immunity: silver bullet or silver lining? Nat Rev
2663	Immunol 2022 Oct;22(10):591-592 [Full text]
2664	Sutton TC, Subbarao K. Development of animal models against emerging coronaviruses: From
2665	SARS to MERS coronavirus. Virology. 2015 May;479-480:247-58 [Full text]
2666	
2667	Tan CW, Chia WN, Young BE, et al. Pan-sarbecovirus neutralizing antibodies in BNT162b2-
2668	immunized SARS-CoV-1 survivors. N Engl J Med 2021 Oct 7;385(15):1401-1406 [Full text]
2669	
2670	Tan HX, Juno JA. Interplay of infection and vaccination in long-term protection from COVID-19.
2671	Lancet Infect Dis 2022 Mar 31:S1473-3099(22)00210-9 [<u>Full text</u>]
2672	

2673 Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell 2674 memory able to cross-recognize variants from Alpha to Omicron. Cell 2022 Mar 3;185(5):847-859.e11 [Full text] 2675 2676 2677 Tayar E, Abdeen S, Alah A, et al. Effectiveness of influenza vaccination against SARS-CoV-2 infection among healthcare workers in Qatar. bioRxiv [Preprint] 2022 May 10 [Full text] 2678 2679 2680 Telenti A, Hodcroft EB, Robertson DL. The evolution and biology of SARS-CoV-2 variants. Cold 2681 Spring Harb Perspect Med 2022 Apr 20:a041390 [Full text] 2682 Tellier R. WHO consultation on COVID-19 vaccines research - Advancing the development of 2683 pan-sarbecovirus vaccines. World Health Organization. 2022 Mar 25 [Presentation 3:30:00] 2684 2685 Temmam S, Vongphayloth K, Baguero et al. Bat coronaviruses related to SARS-CoV-2 and 2686 infectious for human cells. Nature 2022 Apr;604(7905):330-336 [Full text] 2687 2688 2689 Terrier O, Si-Tahar M, Ducatez M, et al. Influenza viruses and coronaviruses: knowns, unknowns, and common research challenges. PLoS Pathog 2021;17(12):e1010106 [Full text] 2690 2691 Tomalka JA, Suthar MS, Deeks SG, et al. Fighting the SARS-CoV-2 pandemic requires a global 2692 approach to understanding the heterogeneity of vaccine responses. Nat Immunol 2022 2693 2694 Mar;23(3):360-370 [Full text] 2695 2696 Trichell AM. Overview of nonhuman primate models of SARS-CoV-2 infection. Comp Med 2021 2697 Oct 1;71(5):411-432 [Full text] 2698 2699 UK Medicines and Healthcare Products Regulatory Agency. MHRA issues new advice, 2700 concluding a possible link between COVID-19 Vaccine AstraZeneca and extremely rare, unlikely to occur blood clots. GOV.UK. Published 2022. Accessed May 10, 2022 [Full text] 2701 2702 US Food and Drug Administration (FDA). Animal Rule Approvals. 2021 Jun 17 [Webpage] 2703 2704 2705 US FDA. FDA approves first COVID 19 vaccine. August 23, 2021 [Press release] 2706 US FDA. Coronavirus (COVID-19) update: FDA limits use of Janssen COVID-19 vaccine to 2707 2708 certain individuals. Press release 2022 May 5 [Full text] 2709 2710 van Doremalen N, Munster VJ. Animal models of Middle East respiratory syndrome coronavirus infection. Antiviral Res 2015;122:28-38 [Full text] 2711 2712 2713 Vardhana S, Baldo L, Morice WG 2nd, et al. Understanding T-cell responses to COVID-19 is 2714 essential for informing public health strategies. Sci Immunol. 2022 Mar 24:eabo1303 [Full text] 2715

Walls AC, Miranda MC, Schäfer A, et al. Elicitation of broadly protective sarbecovirus immunity 2716 2717 by receptor-binding domain nanoparticle vaccines. Cell 2021 Oct 14;184(21):5432-5447.e16 2718 [Full text] 2719 Wang N, Li SY, Yang XL, et al. Serological evidence of bat SARS-related coronavirus infection 2720 2721 in Humans, China. Virol Sin 2018 Feb;33(1):104-107 [Full text] 2722 2723 Wang M, Yan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect 2724 Dis 2005;11(12):1860-1865 [Full text] 2725 2726 Wang S, Li L, Yan F, et al. COVID-19 animal models and vaccines: current landscape and 2727 future prospects. vaccines (Basel). 2021 Sep 26;9(10):1082 [Full text] 2728 Wells HL, Letko M, Lasso G, et al. The evolutionary history of ACE2 usage within the 2729 2730 coronavirus subgenus Sarbecovirus. Virus Evol 2021;7(1):veab007 [Full text] 2731 2732 Wherry EJ, Barouch DH. T cell immunity to COVID-19 vaccines. Science 2022 Aug 19;377(6608):821-822 [Full text] 2733 2734 Williams E, Craig K, Chiu C, et al. Ethics review of COVID-19 human challenge studies: A joint 2735 HRA/WHO workshop. Vaccine. 2022 Feb 14:S0264-410X(22)00127-X [Full text] 2736 2737 Witt AN, Green RD, Winterborn AN. A meta-analysis of rhesus macaques (Macaca mulatta), 2738 2739 cynomolgus macaques (Macaca fascicularis), African green monkeys (Chlorocebus aethiops), 2740 and ferrets (Mustela putorius furo) as large animal models for COVID-19. Comp Med. 2021 Oct 1;71(5):433-441 [Full text] 2741 2742 Wong LR, Zheng J, Wilhelmsen K, et al. Eicosanoid signalling blockade protects middle-aged 2743 2744 mice from severe COVID-19. Nature 2022 May;605(7908):146-151 [Full text] 2745 Woo PC, Lau SK, Huang Y, et al. Coronavirus diversity, phylogeny and interspecies jumping. 2746 2747 Exp Biol Med (Maywood) 2009 Oct;234(10):1117-27 [Full text] 2748 World Health Organization (WHO). COVID-19 vaccine tracker and landscape. Accessed 2022 2749 May 3 [Website] (WHO 2022a) 2750 2751 2752 WHO. C-TAP: A concept paper. 27 October 2020 [Full text] 2753 2754 WHO. Moving forward on goal to boost local pharmaceutical production, WHO establishes global biomanufacturing training hub in Republic of Korea. 23 February 2022 [News Release] 2755 2756 WHO. mRNA Technology Transfer Hub. Accessed on July 5, 2022 [Web page] (WHO 2022b) 2757

2758	
2759 2760	WHO. mRNA Technology Transfer Hub. Accessed on July 5, 2022 [Web page]
2761 2762	WHO. Q&A for guidelines on emergency use listing procedure. 15 July 2020 [Full text]
2763 2764	World Intellectual Property Organization. Patent landscape report: COVID-19-related vaccines and therapeutics. 2022 [Full text]
2765 2766 2767 2768 2769	Wuertz KM, Barkei EK, Chen WH, et al. A SARS-CoV-2 spike ferritin nanoparticle vaccine protects hamsters against Alpha and Beta virus variant challenge. NPJ Vaccines 2021;6(1):129. Published 2021 Oct 28 [Full text]
2770 2770 2771 2772	Yewdell JW. Antigenic drift: Understanding COVID-19. Immunity 2021;54(12):2681-2687 [Full text]
2773 2774 2775 2776	Yewdell JW. Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread. PLoS Pathog;2021 Apr 26;17(4):e1009509 [Full text]
2777 2778 2779 2780	Yu ED, Narowski TM, Wang E, et al. Immunological memory to common cold coronaviruses assessed longitudinally over a three-year period pre-COVID19 pandemic. Cell Host Microbe 2022 Sep 14;30(9):1269-1278.e4 [Full text]
2780 2781 2782 2783	Yuan M, Wu NC, Zhu X, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020;368(6491):630-633 [Full text]
2784 2785 2786	Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012 Nov 8;367(19):1814-20 [Full text]
2787 2788 2789 2790	Zarnitsyna VI, Ellebedy AH, Davis C, et al. Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza. Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):20140248 [Full text]
2791 2792 2793	Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2021 Oct 20:1-10 [Full text]
2794 2795	Zhao J, Li K, Wohlford-Lenane C, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA 2014;111:4970–4975 [Full text]
2796 2797 2798 2799 2800	Zhao J, Perera RA, Kayali G, et al. Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection. J Virol 2015;89(11):6117-6120 [Full text]

- Zhou P, Song G, He WT, et al. Broadly neutralizing anti-S2 antibodies protect against all three
 human betacoronaviruses that cause severe disease. bioRxiv [Preprint] 2022 Mar
 7:2022.03.04.479488 [Full text]
- 2804
- 2805 Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China,
- 2806 2019. N Engl J Med 2020 Feb 20;382(8):727-733 [Full text]
- 2807
- 2808 Ziogas A, Netea MG. Trained immunity-related vaccines: innate immune memory and
- heterologous protection against infections. Trends Mol Med 2022 Apr 21:S1471-
- 2810 4914(22)00077-6 [Abstract]
- 2811
- 2812